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In this paper, we proposed a modified turbulent particle swarm optimization (named MTPSO) model for
solving planar graph coloring problem based on particle swarm optimization. The proposed model is con-
sisting of the walking one strategy, assessment strategy and turbulent strategy. The proposed MTPSO
model can solve the planar graph coloring problem using four-colors more efficiently and accurately.
Compared to the results shown in Cui et al. (2008), not only the experimental results of the proposed
model can get smaller average iterations but can get higher correction coloring rate when the number
of nodes is greater than 30.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The graph coloring problem has been proved to be a classic NP-
complete problem. Until now, there is not an effective strategy to
get the best solution. For solving this kind of problem, both the exact
algorithms and approximate algorithms have been used including
ant colony optimization algorithm (Bui, Nguyen, Patel, & Phan,
2008; Dowsland & Thompson, 2008; Salari & Eshghi, 2005; SangH-
yuck, SeungGwan, & TaeChoong, 2003), tabu search algorithm
(Blochliger & Zufferey, 2008; Galinier & Hertz, 2006; Osman,
2006), genetic algorithm (Yanez & Ramirez, 2003), particle swarm
optimization algorithm (Cui et al., 2008), neural network algorithm
(Talavan & Yanez, 2008), etc. It can be applied to many engineering
applications, such as time tabling and scheduling (de Werra, 1985;
Leighton, 1979), radio frequency assignment (Gamst, 1986), com-
puter register allocation (Chaitin et al., 1981; Chow & Hennessy,
1990), and printed circuit board testing (Garey, Johnson, & So, 1976).
ll rights reserved.
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The particle swarm optimization (PSO) is a novel multi-agent
optimization system (MAOS) inspired by social behavior metaphor
developed by Kennedy and Eberhart (1995, 1995). It has been
widely applied to solve various optimization problems, such as
Kuo et al. applied the PSO and fuzzy time series to forecast enroll-
ments (Kuo et al., 2009), Kuo et al. invoked the hybrid PSO for flow-
shop scheduling (Kuo et al., 2009), Park et al. applied two-factors
high-order fuzzy time series and PSO to forecast TAIFEX and KOSPI
200 (Park, Lee, Song, & Chun, 2010). It is unlike an evolutionary
algorithm, however, in that each potential solution is also assigned
a randomized velocity, and the potential solutions, called particles,
are then ‘‘flown’’ through the multi-dimensional problem space. By
this method, PSO has been extensively applied for solving optimi-
zation problem of continuous space. In 1997, Kennedy proposed a
discrete binary PSO algorithm (Kennedy & Eberhart, 1997). This
version of algorithm not only extends the capabilities of the con-
tinuous-valued one but also is able to optimize any function, either
continuous or discrete.

By solving planar graph coloring problem using PSO, Cui et al.
(2008) proposed the modified PSO, which is superior to that of
the classical PSO. In this paper, we propose a new model, which
uses ‘‘modified turbulent particle swarm optimization’’ (named
MTPSO) techniques for solving the planar graph coloring more
quickly. The experimental results show that the new model is more
efficient than the modified PSO proposed by Cui et al. (2008).

The remainder of this paper is organized as follows: Section 2
briefly overviews the procedure of the planar graph coloring.
Section 3 describes the particle swarm optimization (PSO).
Section 4 discusses the new proposed planar graph coloring
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Fig. 2. The dual of the map.

Fig. 3. The connected planar graph G.
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algorithm in detail. Section 5 discusses the experimental results
obtained from the new proposed planar graph coloring model. Fi-
nally, Section 6 summarizes the contribution of this paper and
conclusions.

2. The procedure of the planar graph coloring

What is the minimum number of colors that can be used to col-
or the regions in a planar map with neighboring regions having dif-
ferent colors? This has been a problem of interest for over a
century. As early as 100 years ago there were many scholars who
had been attracted to carry on researches on this problem, and
many mathematicians had proven that any planar graph could be
colored by four kinds of colors, which is called the four-color prob-
lem (i.e. four-color conjecture). The four-color problem was origi-
nally posed as a conjecture in 1850s. It was finally proved by the
American mathematicians Appel and Haken in 1976. Coloring re-
gions (whether these are states, countries, counties) in a map with
a minimum number of colors such that neighboring regions (those
sharing a common boundary) are colored differently has been
proved to be a classic NP-complete problem. In this section, a brief
overview of the planar graph coloring is addressed. The procedure
of the planar graph coloring is described as follows:

Step 1: Transferring the map to a graph
It is not particularly difficult to show that the map can be
colored with four-colors, shown in Fig. 1, that is, each
region of the map can be assigned one of four given colors
such that neighboring regions are colored differently. So,
with each map, there is associated a graph G, called the
dual of the map, shown in Fig. 2, whose vertices are the
regions of the map and such that two vertices of G are
adjacent if the corresponding regions are neighboring
regions. Observe that the graph G of Fig. 2 is a connected
planar graph, shown in Fig. 3.

Step 2: Creating the adjacency matrix of graph
As we know, a graph G can be defined by two sets, namely
its vertex set V(G) and edge set E(G) as described in Eqs. (1)
and (2), respectively.
Fig. 4. The adjacency matrix A for Fig. 3.
VðGÞ ¼ fv1;v2;v3; . . . ;vng; ð1Þ
EðGÞ ¼ fe1; e2; e3; . . . ; emg; ð2Þ

where n is the number of nodes and m is the number of edges.
A graph can also be described by an adjacency matrix using Eq.
(3). For example, the adjacency matrix A for Fig. 3 is shown in
Fig. 4.

aij ¼
1 if v iv j 2 EðGÞ;
0 otherwise:

�
ð3Þ
Fig. 1. The original map.
Step 3: Specifying color number to the vertex
Coloring program of the adjacency matrix A of planar
graph with n nodes V = v1,v2,v3, . . . ,vn can be indicated as
the coloring sequence R = r1,r2,r3, . . . ,rn, where rx 2 R
(1 6 x 6 n) and rx 2 {0,1,2,3}. According to our coding
assumption above, this coloring program corresponding
coloring sequence of graph G with 7 nodes for Fig. 3 can
be expressed as R = 0, 1, 2, 3, 0, 1, 2.
In order to determine whether the coloring sequence R
satisfies the conditions of the coloring program, we define
the fitness function f(R) and the conflict matrix Co, accord-
ing to adjacency matrix as stated in Eqs. (4) and (5).
f ðRÞ ¼
Xn

x¼1

Xn

y¼1

conflictxy; ð4Þ

conflictxy ¼
axy if rx ¼ ry and x–y

0 otherwise

�
; ð5Þ
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where rx, ry 2 R(1 6 x 6 n,1 6 y 6 n),axy 2 A, and conflictxy

represents the coloring conflict between node vx and
node vy, f(R) represents the aggregate of node coloring
in coloring sequence R. For example, the coloring se-
quence of graph G with 7 nodes as shown in Fig. 3 can
be expressed as R = 0, 1, 2, 3, 0, 1, 2 as described above.
In R, the r1 = 0 and r5 = 0. And in Fig. 4, the a15 = 1. Then
the conflict15 = 1 by invoking Eq. (5). By the method, the
conflict12 = 0, conflict13 = 0, . . ., and then the conflict ma-
trix Co for Fig. 3 is shown in Fig. 5 and the fitness function
f(R) = 4.
Fig. 6. The map coloring for Fig. 1.
Step 4: Adjust coloring number according to adjacency matrix
Obviously, the fitness function f(R) P 0 and f(R) is an even
number. In order to consider in such a way that no two
adjacent vertices (i.e. regions) are of the same color, it cor-
responds to a reasonable program when the fitness func-
tion f(R) = 0. For f(R) = 0, the vertex must adjust the color
number. For examples, we can change the coloring num-
ber r1 of the vertex v1 from 0 to 3 and the coloring number
r7 of the vertex v7 from 2 to 0. Then the fitness function f(R)
will equal to 0 and the coloring sequence R = 3, 1, 2, 3, 0, 1,
0. Finally, the map coloring program will get solution as
shown in Fig. 6.

3. Particle swarm optimization

The particle swarm optimization (PSO) is a novel multi-agent
optimization system (MAOS) inspired by social behavior metaphor
developed by Kennedy and Eberhart (1995, 1995, 1998). It is unlike
an evolutionary algorithm, however, in that each potential solution
is also assigned a randomized velocity, and the potential solutions,
called particles, are then ‘‘flown’’ through the problem hyperspace.
The PSO method was generally found to perform better than other
algorithms (for example, genetic algorithm, memetic algorithm,
antcolony systems, and shuffled frog leaping) in terms of success
rate and solution quality (Eberhart et al., 1998; Elbeltagi, Hegazy,
& Grierson, 2005). In PSO, instead of using more traditional genetic
operators, each particle’s velocity (individual) is stochastically
accelerated toward its previous best position (where it had its best
fitness value) and toward a neighborhood best position (the posi-
tion of best fitness by any particle in its neighborhood).

3.1. Standard particle swarm optimization

In the particle swarm optimization, each particle i has a position
represented by a position vector Pi. A swarm of particles moves
through a multi-dimensional problem space and each particle i
with the velocity represented by a vector Vi. Each particle keeps
track of its own best position in each iteration (or time cycle),
which is associated with the best experience it has achieved and
denotes Pbest. The best position among all the particles obtained
in the population denotes PGbest. For each iteration, the position
Pbest of its own best and the position PGbestof the best particle of
Fig. 5. The conflict matrix Co for Fig. 3.
swarm are calculated as the best fitness of all particles. Accord-
ingly, each particle changing the velocity this way enables the par-
ticle Pi to search around its individual best position Pbest and the
global best position PGbest as follows:

Vi ¼ x� Vi þ c1 � rand1ðÞ � ðPbest � PiÞ þ c2 � rand2ðÞ
� ðPGbest � PiÞ; ð6Þ

where c1 and c2 are positive acceleration constants (usually
c1 = c2 = 2), rand1() and rand2() are uniformly distributed random
numbers in the range [0,1], and x is an inertia weight employed
as an improvement proposed by Shi and Eberhart (1998). Then
the particle flies toward a new position according to Eq. (7).

Pi ¼ Pi þ Vi: ð7Þ

The whole running procedure of the standard PSO is described in
Algorithm 1.

Algorithm 1 (Standard PSO algorithm).
1. initialize all particles’ positions Pi and velocities Vi, for
1 6 i 6 NumberOfParticles.

2. while the stop condition (the optimal solution is found or
the maximal moving steps are reached) is not satisfied do

3. for particle i, (1 6 i 6 NumberOfParticles) do
4. calculate the fitness value of particle i.
5. update the personal best position of particle i according

to the fitness value.
6. end for
7. update the global best position of all particles according to

the fitness value.
8. for particle i, (1 6 i 6 NumberOfParticles)do
9. move particle i to another position according to Eqs. (6)

and (7).
10. end for
11. end while

3.2. Discrete particle swarm optimization

Since PSO was first introduced to optimize various continuous
nonlinear functions by Kennedy and Eberhart (1995, 1995, 1998),
it has been successfully applied to a wide range of applications.
However, the major obstacle of successfully applying a PSO is its
continuous real numbers, but it cannot be used to discrete problem
directly. Aiming at this drawback, Kennedy and Eberhart (1997)
developed a discrete binary version of PSO (named BPSO). In BPSO,
the particle is characterized by a binary solution representation, and
the velocity must be transformed into the change of probability for
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each binary dimension to take a value of one. In 2008, Cui et al.
(2008) developed a quaternary-valued PSO method by defining
the particles’ positions and velocities in terms of changes of proba-
bilities of solution elements’ assumed values. Thus a particle moves
in a state space restricted to zero, one, two, and three on each
dimension, where each particle’s velocity represents the probability
of particle’s position taking the assumed value. The model can im-
proved BPSO and combined the solution requirement of the planar
graph coloring problem to demonstrate the efficiency of PSO in dis-
crete optimization problem. For assigning a new particle position,
the quaternary-valued PSO method uses Eqs. (8) and (9) to replace
Eq. (7).

f ðVjÞ ¼

0; randðÞ > r&randðÞ < SðVjÞ;
1; randðÞ < r&randðÞ < SðVjÞ;
2; randðÞP r&randðÞP SðVjÞ;
3; randðÞ 6 r&randðÞP SðVjÞ;

8>>><
>>>:

ð8Þ

Pj ¼ ModððPj þ f ðVjÞÞ;4Þ; ð9Þ

where Vj(1 6 j 6 number of nodes) is particle’s velocity, rand() is a
uniformly distributed random number in the range [0,1], r = 0.5,
S(Vj) is the sigmoid function given by S(v) = 1/(1 + e�v) and
Mod(number, divisor) function returns the remainder after a num-
ber is divided by a divisor.

4. The new proposed planar graph coloring model

A new planar graph coloring, named MTPSO, based on the par-
ticle swarm optimization. The MTPSO model, which employs the
walking one strategy, assessment strategy and turbulent strategy,
is proposed in this paper.

4.1. Walking one strategy

Cui et al. (2008) developed a quaternary-valued PSO method by
defining the particles’ positions and velocities. The walking one
strategy is a probability function based on quaternary-valued
PSO; it depends on the node and adjacent nodes of the number
of the conflicts. The number of the conflict nodes could get from
Eq. (10) based on Eq. (5). Then the number of the conflict nodes
will be converted to collision factor through the sigmoid function
(i.e. Eq. (11)). If the collision factor is large, then it will be assigned
a higher probability to change its color number. Otherwise, it will
be assigned a lower probability. (i.e. Eqs. (12) and (13)). The walk-
ing one strategy is shown as follows:

Crj ¼
Xn

k¼1

conflictjk; ð10Þ

Cfj ¼
1

1þ e�Crjþ2 ; ð11Þ

MðVjÞ ¼
1; if Cfj > randðÞ&SðVjÞ > randðÞ;
0; otherwise;

�
ð12Þ

Pj ¼ ModððPj þMðVjÞÞ;4Þ; ð13Þ

where Crj(1 6 j 6 n) is the number of conflict nodes with jth node,
and Cfj is the collision factor of jth node in the range [0,1], n is
the number of nodes, rand() is a uniformly distributed random
number in the range [0,1], S(Vj) is the sigmoid function given by
S(v) = 1/(1 + e�v). For example, in Fig. 5, the Cr1 = 1 and Cr2 = 0 by
invoking Eq. (10), then the Cf1 = 0.27 and Cf2 = 0.12 by invoking
Eq. (11). Suppose the particle velocity V1 = 1 and V2 = 1, then the
S(V1) = 0.73 and S(V2) = 0.73. And suppose rand1 = 0.2 and
rand2 = 0.2, then the M(V1) = 1 and M(V2) = 0 by invoking Eq. (12).
If the current position of particle P1 = 1 and P2 = 1, then the next po-
sition of particle P1 will move to 2, but P2 will stay in 1.
4.2. Assessment strategy

In graph coloring, the maximum conflict node is the most trou-
blesome and needs to be processed first. In this strategy, we will
find the maximum conflict node and assess it. The strategy is de-
scribed in Algorithm 2:

Algorithm 2 (Assessment strategy algorithm).

1. set fgChanged = False
2. for color o, (0 6 o 6 3) do
3. PmaxðCrjÞ ¼ oð1 6 j 6 nÞ
4. calculate the new fitness value of particle i (i.e., fni).
5. if fni < foi then
6. set fgChanged = True
7. exit for;
8. end if
9. end for

where PmaxðCrjÞ is the maximum conflict node of particle, and
Crj(1 6 j 6 n) is the number of conflict nodes with jth node (i.e.
Eq. (10)). fni represents new fitness value with changing the maxi-
mum conflict node of particle i. foi represents old fitness value of
particle i. The flag fgChanged represents the changing status of max-
imum conflict node of particle.

4.3. Turbulent strategy

In the standard PSO, whether it is in continuous or discrete, it
has been shown that the trajectories of the particles oscillate in dif-
ferent sinusoidal waves and converge quickly, sometimes prema-
turely (Liu & Abraham, 2005). Such situations could occur even
in the early stages of the search. In fact, this does not even guaran-
tee that the algorithm has converged to a local minimum and it
merely means that all the particles have converged to the best po-
sition discovered so far by the swarm. During each iteration, the
particle is attracted toward the location of the best fitness achieved
so far by the particle itself and by the location of the best fitness
achieved so far across the whole swarm. In order to guide the par-
ticles effectively in the search space, the maximum moving dis-
tance during an iteration and its moving range must be clamped
in between the maximum velocity. The method to drive those lazy
particles (i.e. the particles’ velocity is smaller than threshold) and
so that they can explore a better solution, named turbulent particle
swarm optimization (TPSO) which is shown as follows:

Vj ¼
�1þ randðÞ � 2 if jVjj < Vs;

Vj otherwise;

�
ð14Þ

where Vj(1 6 j 6 n) is the velocity of jth node, n is the number of
nodes, rand() is a uniformly distributed random number in the
range [0,1], Vs is the minimum velocity threshold, a threshold
parameter to limit the minimum of the particles’ velocity. If Vs is
large, it will shorten the oscillation period, and it provides a great
probability for the particles to across local optimal using the same
number of iterations. But a large Vs compels particles in the quick
‘‘flying’’ state, which leads them not to search the local optimal
and forcing them not to refine the search. In other words, a large
Vs facilitates a global search, and a small Vs facilitates a local search
instead.

4.4. MTPSO algorithm

The whole running procedure of the MTPSO is described in
Algorithm 3.



Table 3
The numbers of conflict nodes with each node of particles 1–5.

b1 b2 b3 b4 b5 b6 b7 Fitness value

particle1 0 1 1 1 1 1 1 6
particle2 1 0 0 2 0 3 2 8
particle3 1 1 1 2 1 1 1 8
particle4 1 1 1 1 1 1 0 6
particle5 1 1 0 1 1 0 0 4
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Algorithm 3 (MTPSO algorithm).

1. initialize all particles’ positions (i.e. coloring number) Pi and
velocities Vi, for 1 6 i 6 NumberOfParticles.

2. while the stop condition (the optimal solution is found or
the maximal moving steps are reached) is not satisfied do

3. change the inertia weight x according to the number of
iterations.

4. for particle i, (1 6 i 6 NumberOfParticles) do
5. calculate foi the old fitness value of particle i.
6. update the personal best position of particle i according to

the fitness value.
7. end for
8. update the global best position of all particles according to

the fitness value.
9. for particle i, (1 6 i 6 NumberOfParticles) do

10. calculate the velocity of particle i according to Eq. (6).
11. turbulent the velocity of particle i according to Eq. (14).
12. assessment whether to accept the change of the maxi-

mum conflict node with the fitness value according to Algo-
rithm 2.

13. if fgchanged = True then
14. move particle i to another position with the change of

the maximum conflict node.
15. else
16. move particle i to another position according to Eqs.

(10)–(13).
17. end if
18. end for
19. end while

An example for illustrating the MTPSO model for solving planar
graph coloring problem is given in the following. Initially, the value
of the velocity threshold Vs corresponding to the former is set to
0.00001, both c1 and c2 are set to 2, and x is set to 2. Let the num-
ber of particles be 5. A particle is defined as a vector consisting of n
elements (i.e. b1,b2, . . . ,bj�1,bj, . . . ,bn�1,bn, where 1 < j 6 n). That is,
we base on these n elements to define the n nodes (i.e. regions in
the map). For simplicity, please refer to Section 2 for the continu-
ation of the example of Fig. 1 in detail. The randomized initial posi-
tions and the initial velocities of all particles are listed in Tables 1
and 2, respectively. And the numbers of conflict nodes with each
node of all particles are listed in Table 3.

After all particles have got their own fitness values, every parti-
cle updates its own personal best position so far according to the
fitness value. Note that the initial personal best positions are set
Table 1
The initial position of particles 1–5.

b1 b2 b3 b4 b5 b6 b7 Fitness value

particle1 0 3 1 2 3 2 1 6
particle2 1 2 3 1 0 1 1 8
particle3 3 1 2 1 3 1 2 8
particle4 2 2 3 3 0 0 1 6
particle5 1 2 0 2 1 3 1 4

Table 2
The initial velocities of particles 1–5.

b1 b2 b3 b4 b5 b6 b7

particle1 �2.812 2.243 1.025 �3.738 �3.812 �2.860 �2.622
particle2 2.614 �3.089 3.124 �0.503 �1.350 0.357 �1.151
particle3 �0.891 2.426 �3.674 �0.496 �1.076 1.922 �2.531
particle4 �3.117 2.967 �0.434 �2.170 2.675 3.084 �2.687
particle5 2.849 �2.736 2.019 �3.562 2.066 �2.254 �0.095
as the initial positions of all particles. The personal best positions
of all particles so far are listed in Table 1. In Table 1, since the fit-
ness value of particle 5 is the least among all five particles so far,
the global best position is then set to particle 5. Then the MTPSO
algorithm moves all particles to the second positions according
to Eqs. (6) and (10)–(14).

Vb1 ¼ 2� ð�2:812Þ þ 2� rand1ðÞ � ð0� 0Þ
þ 2� rand2ðÞ � ð1� 0Þ ¼ �5:022;

Vb2 ¼ 2� ð2:243Þ þ 2� rand1ðÞ � ð3� 3Þ
þ 2� rand2ðÞ � ð2� 3Þ ¼ 3:885;

Vb3 ¼ 2� ð1:025Þ þ 2� rand1ðÞ � ð1� 1Þ
þ 2� rand2ðÞ � ð0� 1Þ ¼ 1:449;

Vb4 ¼ 2� ð�3:738Þ þ 2� rand1ðÞ � ð2� 2Þ
þ 2� rand2ðÞ � ð2� 2Þ ¼ �7:475;

Vb5 ¼ 2� ð�3:812Þ þ 2� rand1ðÞ � ð3� 3Þ
þ 2� rand2ðÞ � ð1� 3Þ ¼ �8:828;

Vb6 ¼ 2� ð�2:860Þ þ 2� rand1ðÞ � ð2� 2Þ
þ 2� rand2ðÞ � ð3� 2Þ ¼ �5:118;

Vb7 ¼ 2� ð�2:622Þ þ 2� rand1ðÞ � ð1� 1Þ
þ 2� rand2ðÞ � ð1� 1Þ ¼ �5:244:

ð15Þ

It makes no difference for the Crb2 even if the maximum conflict
node Pb2 uses any one of the colors. Hence, in the assess stage of
the particle 1, the numbers of conflict nodes vector Cr = {0,1,1,
1,1,1,1} is not changed. Then the particle 1 enters walking one
strategy. In walking one strategy, the velocity of particle 1 is calcu-
lated in Eq. (15) based on Eq. (6), and the velocity vector is
V = {�5.022,3.885,1.449, �7.475,�8.828,�5.118,�5.244}. And
then it will be translated to {0.0065,0.9799,0.8098,0.0006,
0.0001,0.0060,0.0053} by using sigmoid function. The absolute va-
lue velocity vector is larger than Vs(i.e. Eq. (14)), so the turbulent
strategy will not operate. And the Cr vector is {0,1,1,1,1,1,1} by
using Eqs. (5) and (10), and the Cf vector equals to
{0.1192,0.2689,0.2689,0.2689,0.2689,0.2689,0.2689} by using Eq.
(11). The rand vector is {0.51,0.23,0.89,0.45,0.61,0.28,0.15}. And
the M(V) = {0,1,0,0,0,0,0} by using Eq. (12). Then the new position
vector of particle 1 is {0,0,1,2,3,2,1} based on Eq. (13).

The particle 2 in assessment strategy (i.e. Algorithm 2), the
maximum conflict node Pb6 will change color from 1 to 0, and
Crb6 will down to 0. And the numbers of conflict nodes vector Cr
will change from {1,0,0,2,0,3,2} to {0,0,0,2,0,0,2}. And changed
flag fgChanged will set to False. Then the new position vector of
particle 2 equals to {1,2,3,1,0,0,1}.
Table 4
The second positions of particles 1–5.

b1 b2 b3 b4 b5 b6 b7 Fitness value

particle1 0 0 1 2 3 2 1 6
particle2 1 2 3 1 0 0 1 4
particle3 3 1 2 0 3 1 2 4
particle4 1 2 3 3 0 0 1 4
particle5 0 2 0 2 1 3 1 2



Table 5
The second velocities of particles 1–5.

b1 b2 b3 b4 b5 b6 b7

particle1 �5.022 3.885 1.449 �7.475 �8.828 �5.118 �5.244
particle2 5.228 �6.177 1.279 0.651 �1.044 4.028 �2.301
particle3 �4.886 6.404 �10.453 0.560 �5.257 6.950 �6.615
particle4 �7.799 5.934 �5.561 �5.903 6.914 10.859 �5.373
particle5 5.698 �5.473 4.037 �7.124 4.132 �4.508 �0.189

Table 6
Comparison of the experimental resultsa.

Node
n

Algorithms Maximal
iterations

Minimal
iterations

Average
iterations

Correct
coloring rate

10 MTPSO 1 0 0.16 100%
MPSO 3 0 0.35 100%

15 MTPSO 2 0 1.47 100%
MPSO 32 0 6.5 100%

20 MTPSO 3 0 1.74 100%
MPSO 575 1 135.04 100%

25 MTPSO 6 2 4.36 100%
MPSO 7202 63 1956.79 100%

30 MTPSO 7 2 4.68 100%
MPSO 10000 1789 9497.78 11%

50 MTPSO 15 7 11.48 100%
MPSO 10000 10000 10000 0%

100 MTPSO 42 23 29.83 100%
MPSO 10000 10000 10000 0%

150 MTPSO 125 46 73.92 100%
MPSO 10000 10000 10000 0%

200 MTPSO 249 53 127.68 100%
MPSO 10000 10000 10000 0%

250 MTPSO 582 88 298.88 100%
MPSO 10000 10000 10000 0%

a MTPSO is the algorithm proposed in this paper, and MPSO is the algorithm
proposed in Cui et al. (2008).
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By these procedures, we can get the position and velocity of
each of the other particles. Now the MTPSO model moves all parti-
cles to the second positions according to Algorithm 2, Eqs. (6) and
(10)–(14). The second positions and the corresponding new fitness
values of all particles are listed in Table 4.

By comparing the fitness values listed in Table 1 with those
listed in Table 4, it is obvious that particles 2–5 reach a better posi-
tion than its own personal best position so far. Also the new global
best position for all particles is created by particle 5 as its fitness is
the least among all particles so far. The MTPSO model repeats the
above steps until the stop condition is satisfied.

5. Experimental results

The essential parameters of MTPSO model for the planar graph
coloring are set as follows. We simulated 100 runs in each order.
Let the maximal number of iterations be 10000, the number of par-
ticles be 200, the value of inertial weight (i.e. x) be 2 linear de-
creased by iterations to 0.3, the self confidence coefficient (i.e. c1)
and the social confidence coefficient (i.e. c2) both be 2, the mini-
mum velocity threshold Vs be 0.00001, respectively.

In order to illustrate the performance of the algorithms pre-
sented in this paper, we implemented the algorithm presented in
Cui et al. (2008). The essential parameters of modified PSO for
the planar graph coloring are set as follows. We simulated 100 runs
in each order. Let the maximal number of iterations be 10000, the
number of particles be 200, the value of inertial weight (i.e. x) be 2
linear decreased by iterations to 0.8, the self confidence coefficient
(i.e. c1) be 2 and the social confidence coefficient (i.e. c2) be 1.8, the
disturbance factor be 5, respectively.

By randomly generating a given scaled planar graph, and sepa-
rately calculating 100 times to MTPSO algorithm and modified PSO
(i.e. MPSO), a comparison of the planar graph coloring efficiency
(i.e. the average iterations) and accuracy (i.e. the correct coloring
rate) between the proposed model and Cui et al. (2008) model is
listed in Tables 5 and 6. We can see that the proposed model gets
smaller average iterations than the model presented in Cui et al.
(2008). Also the proposed model gets the higher correct coloring
rate than the model presented in Cui et al. (2008) when the num-
ber of nodes is grater than 30.
6. Conclusions

In this paper, we proposed a modified turbulent particle swarm
optimization (named MTPSO) for solving planar graph coloring
based on particle swarm optimization. The proposed model is con-
sisting of the walking one strategy, assessment strategy and turbu-
lent strategy for improving the discrete PSO in the planar graph
coloring. The walking one strategy and assessment strategy can
improve the performance of MTPSO algorithm. The turbulent strat-
egy can be helpful to drive those lazy particles (i.e., those velocities
of the particles smaller than threshold) and hence they can explore
a better solution. The experimental results show that the MTPSO
model is more efficient and accurate than the modified PSO algo-
rithm proposed by Cui et al. (2008).
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