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In this paper, we proposed a modified turbulent particle swarm optimization (named MTPSO) method for
the temperature prediction and the Taiwan Futures Exchange (TAIFEX) forecasting, based on the two-fac-
tor fuzzy time series and particle swarm optimization. The MTPSO model can be dealt with two main fac-
tors easily and accurately, which are the lengths of intervals and the content of forecast rules. The
experimental results of the temperature prediction and the TAIFEX forecasting show that the proposed
model is better than any existing models and it can get better quality solutions based on the high-order
fuzzy time series, respectively.
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1. Introduction

Because nobody knows everything till tomorrow, there is al-
ways a hope for the future of what happens to be unpredictable.
For example, the stock market forecasts for tomorrow, the weather
forecasts for tomorrow, or the enrollments forecast for the next
year. Forecast is a very interesting research topic; it attracted many
researchers over the past few decades. They were using some fore-
casting techniques to forecast the tread of stock market (Cheng,
Chen, Teoh, & Chiang, 2008; Chu, Chen, Cheng, & Huang, 2009;
Huarng & Yu, 2005; Lee, Wang, Chen, & Leu, 2006; Lee, Wang, &
Chen, 2007, 2008; Yu & Huarng, 2008; Wang & Chen, 2009; Hua-
rng, 2001a, 2001b), tomorrow’s temperature (Chen & Hwang,
2000; Lee et al., 2006; Lee, Wang, & Chen, 2007, 2008; Wang &
Chen, 2009; Li, Chen, & Li, 1988), enrollments of the next year
(Chen, 1996; Cheng et al., 2008; Huarng, 2001a, 2001b; Kuo
et al., 2009; Singh, 2009; Singh, 2007a, 2007b; Song & Chissom,
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1993b, 1994; Tsai & Wu et al., 2000), and etc. As we know, to fore-
cast these matters is generally believed to be a very difficult task. It
looks like the performance of a random walk process on a different
time. Obviously, we need to investigate some intelligent forecast-
ing paradigms to solve the forecasting problems.

Zadeh (1965) proposed the fuzzy set theory first and then got
fruitful achievements both in theory and applications. In Li et al.
(1988) proposed a method for the weather forecast considering
fuzziness between the demarcation lines of fuzzy grades and the
membership functions of fuzzy grade. Song and Chissom intro-
duced a new forecast model based on the concept of fuzzy time
series (Song & Chissom, 1993a, 1993b, 1994). They use the time-
variant fuzzy time series model and the time-invariant fuzzy time
series model based on the fuzzy set theory for forecasting the
enrollments of the University of Alabama. Chen improved the fuzzy
time series model by max–min composition operations (Chen,
1996). Huarng presented a method to improve forecasting results
in forecasting the enrollments of the University of Alabama and
the Taiwan Futures Exchange (TAIFEX) (Huarng, 2001a, 2001b).
Chen and Hwang presented a method for the temperature predic-
tion based on fuzzy time series (Chen & Hwang, 2000). Lee et al.
presented methods for forecasting the temperature and the TAIFEX
based on two-factors high-order fuzzy time series (Lee et al., 2007,
2008). They also use the genetic algorithm and genetic simulated
annealing in it. Kuo et al. presented an improved method for
forecasting enrollments based on the fuzzy time series and particle
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swarm optimization (Kuo et al., 2009). They propose a more effec-
tive and accuracy method to forecasting enrollments.

For these forecast methods, there are two main interesting fac-
tors affecting the forecast accuracy, which are the lengths of inter-
vals and the content of forecast rules. By considering these two
main factors, in this paper, we proposed a new method for the
temperature prediction and the TAIFEX forecasting, based on
two-factor high-order fuzzy relationships and particle swarm opti-
mization. The proposed method uses ‘‘modified turbulent particle
swarm optimization” (named MTPSO) techniques to find the prop-
er content of two main factors to improve the forecasted accuracy.
The experimental results show that the new model is more precise
than the existing methods.

The remainder of this paper is organized as follows: Section 2
briefly overviews the procedure of temperature prediction using
the fuzzy time series. Section 3 describes the particle swarm opti-
mization (PSO). Section 4 discusses the details of the new proposed
forecast model. Section 5 discusses the experimental results ob-
tained from the new proposed forecast model. Finally, Section 6
summarizes the contribution of this paper and conclusions.
Table 1
Historical data of the daily average temperature from June 1996 to September 1996 in
Taipei, Taiwan (Unit: �C) (Taiwan Central Weather Bureau, 1996).

Days Month

June July August September

1 26.1 29.9 27.1 27.5
2 27.6 28.4 28.9 26.8
3 29.0 29.2 28.9 26.4
4 30.5 29.4 29.3 27.5
5 30.0 29.9 28.8 26.6
6 29.5 29.6 28.7 28.2
7 29.7 30.1 29.0 29.2
8 29.4 29.3 28.2 29.0
9 28.8 28.1 27.0 30.3
10 29.4 28.9 28.3 29.9
11 29.3 28.4 28.9 29.9
12 28.5 29.6 28.1 30.5
13 28.7 27.8 29.9 30.2
14 27.5 29.1 27.6 30.3
15 29.5 27.7 26.8 29.5
16 28.8 28.1 27.6 28.3
17 29.0 28.7 27.9 28.6
18 30.3 29.9 29.0 28.1
19 30.2 30.8 29.2 28.4
20 30.9 31.6 29.8 28.3
21 30.8 31.4 29.6 26.4
22 28.7 31.3 29.3 25.7
23 27.8 31.3 28.0 25.0
24 27.4 31.3 28.3 27.0
25 27.7 28.9 28.6 25.8
26 27.1 28.0 28.7 26.4
27 28.4 28.6 29.0 25.6
28 27.8 28.0 27.7 24.2
29 29.0 29.3 26.2 23.3
30 30.2 27.9 26.0 23.5
31 26.9 27.7
2. The procedure of the temperature prediction using the fuzzy
time series

In this section, a brief overview of the fuzzy time series is in-
cluded within the forecasting procedure in the temperature predic-
tion. The procedure also applies to forecast TAIFEX. The concept of
the fuzzy time series was introduced by Song and Chissom (1993a,
1993b, 1994) based on the fuzzy set theory (Zadeh, 1965). It can
deal with the forecasting problem where the historical data are lin-
guistic values. The procedure of the temperature prediction using
the fuzzy time series is described as follows:

Let U be the universe of discourse, where U = {u1,u2, . . . ,um}. A
fuzzy set Ai of U is defined by

Ai ¼ u1=fAi
ðu1Þ þ u2=fAi

ðu2Þ þ � � � þ um=fAi
ðumÞ; ð1Þ

where fAi
is the membership function of the fuzzy set

Ai; fAi
: U ! ½0;1�. uj is an element of fuzzy set Ai, and fAi

ðujÞ is the de-
gree of membership of uj belonging to Ai. fAi

ðujÞ 2 ½0;1� and
1 6 j 6m.

Let Y(t)(t = . . . ,0,1,2, . . .) be the universe of discourse on which
the fuzzy sets fi(t)(i = 1,2, . . .) are defined and F(t) is a collection
of f1(t), f2(t), Then F(t) is called a fuzzy time series defined on
Y(t)(t = . . .,0,1,2, . . .).

Suppose F(t) is caused by F(t � 1) and it is denoted by the fuzzy
relationship F(t � 1) ? F(t). Then this relation can be expressed as
F(t) = F(t � 1) � R(t, t � 1), where ‘‘�” is usually a max–min opera-
tor, R(t, t � 1) is the union of all fuzzy relations and each of
R(t, t � 1) is a fuzzy relationship between F(t � 1) and F(t).
F(t) = F(t � 1) � R(t, t � 1) is called the first-order model of F(t).

Suppose F(t) is a fuzzy time series and R(t, t � 1) is a first-order
model of F(t). If R(t, t � 1) = R(t � 1,t � 2) for any time t,R(t, t � 1) is
independent of t, then F(t) is called a time-invariant fuzzy time
series.

Let F(t) be a fuzzy time series. If F(t) is caused by F(t � 1),
F(t � 2), . . . and F(t � k), then the kth-order fuzzy relationship is rep-
resented by F(t � k), . . . ,F(t � 2),F(t � 1) ? F(t), where F(t � k), . . . ,
F(t � 2), F(t � 1) is the current state and F(t) is the next state.

Let FA(t) and FB(t) be two fuzzy time series. If FA(t) is caused
by (FA(t � 1),FB(t � 1)), (FA(t � 2),FB(t � 2)), . . . , (FA(t � k),FB(t � k)),
then the two-factor kth-order fuzzy relationship is represented by
(FA(t � k),FB(t � k)), . . . , (FA(t � 2),FB(t � 2)), (FA(t � 1), FB(t � 1)) ?
FA(t), where FA(t) and FB(t) (t = . . .0,1,2, . . .) are called the main-
factor fuzzy time series and the second-factor fuzzy time
series, respectively. (FA(t � k), FB(t � k)), . . . , (FA(t � 2),FB(t � 2)),
(FA(t � 1),FB(t � 1)) and FA(t) are called the current state and the
next state of the fuzzy relationship (FA(t � k),FB(t � k)), . . . ,
(FA(t � 2),FB(t � 2)), (FA(t � 1), FB(t � 1)) ? FA(t), respectively.

Two-factor fuzzy time series can be used to predict temperature
which is described as follows:
2.1. Step 1: Define two universes of discourse YA(t) and YB(t)

Let YA(t) and YB(t) be two historical data on day t(June-1-
1996 6 t 6 September-30-1996). For defining the universe, first
find the minimum data Dmin and the maximum data Dmax of known
historical data. Based on Dmin and Dmax, define the universe YA(t) (or
YB(t)) as [Dmin � D1,Dmax + D2] where D1 and D2 denote the buffers
to adjust the lower bound and the upper bound of the universe of
discourse, YA(t) (or YB(t)), respectively.

According to Table 1, it is obvious that the daily minimum tem-
perature and maximum temperature are Dmin = 23.3 �C and
Dmax = 31.6 �C, respectively. For convenience of illustrating the
forecasting example here, we set D1 = 0.3 �C and D2 = 0.4 �C. We
called it the main-factor of the fuzzy time series and get the uni-
verse of discourse on YA(t) = [23.0,32.0].

According to Table 2, it is obvious that the daily minimum cloud
density and maximum cloud density are Dmin = 3 and Dmax = 100,
respectively. As for the illustration, we set D1 = 3 and D2 = 0. We
called it the second-factor of the fuzzy time series and get the uni-
verse of discourse on YB(t) = [0.0,100.0].
2.2. Step 2: Partition the universes YA(t) and YB(t) into several intervals

After Step 1, the universes of discourse on YA(t) and YB(t) are
then cut into the pre-defined number of intervals. First, we divide
YA(t) into 9 intervals with equal lengths, and use u1,u2,u3,



Table 2
Historical data of the daily cloud density from June 1996 to September 1996 in Taipei,
Taiwan (Unit: %) (Taiwan Central Weather Bureau, 1996).

Days Months

June July August September

1 36 15 100 29
2 23 31 78 53
3 23 26 68 66
4 10 34 44 50
5 13 24 56 53
6 30 28 89 63
7 45 50 71 36
8 35 34 28 76
9 26 15 70 55
10 21 8 44 31
11 43 36 48 31
12 40 13 76 25
13 30 26 50 14
14 29 44 84 45
15 30 25 69 38
16 46 24 78 24
17 55 26 39 19
18 19 25 20 39
19 15 21 24 14
20 56 35 25 3
21 60 29 19 38
22 96 48 46 70
23 63 53 41 71
24 28 44 34 70
25 14 100 29 40
26 25 100 31 30
27 29 91 41 34
28 55 84 14 59
29 29 38 28 83
30 19 46 33 38
31 95 26
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u4,u5,u6,u7,u8 and u9 to denote each interval, respectively.
Thus, the nine intervals are u1 = [23.0,24.0), u2 = [24.0,25.0),
u3 = [25.0,26.0),u4 = [26.0,27.0),u5 = [27.0,28.0), u6 = [28.0,29.0),
u7 = [29.0,30.0),u8 = [30.0,31.0) and u9 = [31.0,32.0]. Then calcu-
late the midpoint of intervals, which are m1 = 23.5,m2 = 24.5,
m3 = 25.5,m4 = 26.5,m5 = 27.5, m6 = 28.5, m7 = 29.5,m8 = 30.5 and
m9 = 31.5, respectively. Second, we divide YB(t) into 7 intervals
with equal lengths, and use v1,v2,v3,v4,v5,v6 and v7 to denote each
interval, respectively. Thus, the seven intervals are v1 = [0.0,14.29),
v2 = [14.29, 28.57), v3 = [28.57, 42.86),v4 = [42.86, 57.14), v5 =
[57.14,71.43),v6 = [71.43,85.71) and v7 = [85.71,100.0].

2.3. Step 3: Define fuzzy set linguistic terms

According to the number of intervals as mentioned above, let
‘‘historical data” be the linguistic variable. First, define the main-
factor represented by fuzzy sets Ai. Each Ai(1 6 i 6 9) denotes a fuz-
zy set, and its definition is described in Eq. (1). In Eq. (2), the sym-
bol fAi

ðujÞ 2 ½0;1�ð1 6 j 6 9Þ is a real number and denotes the
membership degree that uj belongs to Ai(1 6 i 6 9). In other words,
Ai denotes a fuzzy set {u1,u2, . . . ,u9} with different membership de-
gree ffAi

ðu1Þ; fAi
ðu2Þ; . . . ; fAi

ðu9Þg. The detailed definitions of all
main-factor fuzzy sets are described in Eq. (2).

A1 ¼u1=1þu2=0:5þu3=0þu4=0þu5=0þu6=0þu7=0þu8=0þu9=0;
A2 ¼u1=0:5þu2=1þu3=0:5þu4=0þu5=0þu6=0þu7=0þu8=0þu9=0;
A3 ¼u1=0þu2=0:5þu3=1þu4=0:5þu5=0þu6=0þu7=0þu8=0þu9=0;
A4 ¼u1=0þu2=0þu3=0:5þu4=1þu5=0:5þu6=0þu7=0þu8=0þu9=0;
A5 ¼u1=0þu2=0þu3=0þu4=0:5þu5=1þu6=0:5þu7=0þu8=0þu9=0;
A6 ¼u1=0þu2=0þu3=0þu4=0þu5=0:5þu6=1þu7=0:5þu8=0þu9=0;
A7 ¼u1=0þu2=0þu3=0þu4=0þu5=0þu6=0:5þu7=1þu8=0:5þu9=0;
A8 ¼u1=0þu2=0þu3=0þu4=0þu5=0þu6=0þu7=0:5þu8=1þu9=0:5;
A9 ¼u1=0þu2=0þu3=0þu4=0þu5=0þu6=0þu7=0þu8=0:5þu9=1:

ð2Þ

Then define the second-factor represented by fuzzy sets Bi. Each
Bi(1 6 i 6 7) denotes a fuzzy set, and its definition is described sim-
ilarly to Ai in Eq. (1). In Eq. (3), the symbol fBi

ðv jÞ 2 ½0;1�ð1 6 j 6 7Þ
is a real number and denotes the membership degree that vj be-
longs to Bi(1 6 i 6 7). In other words, Bi denotes a fuzzy set
{v1,v2, . . . ,v7} with different membership degree ffBi

ðv1Þ;
fBi
ðv2Þ; . . . ; fBi

ðv7Þg. The detailed definitions of all second-factor fuz-
zy sets are described in Eq. (3).

B1 ¼ v1=1þ v2=0:5þ v3=0þ v4=0þ v5=0þ v6=0þ v7=0;
B2 ¼ v1=0:5þ v2=1þ v3=0:5þ v4=0þ v5=0þ v6=0þ v7=0;
B3 ¼ v1=0þ v2=0:5þ v3=1þ v4=0:5þ v5=0þ v6=0þ v7=0;
B4 ¼ v1=0þ v2=0þ v3=0:5þ v4=1þ v5=0:5þ v6=0þ v7=0;
B5 ¼ v1=0þ v2=0þ v3=0þ v4=0:5þ v5=1þ v6=0:5þ v7=0;
B6 ¼ v1=0þ v2=0þ v3=0þ v4=0þ v5=0:5þ v6=1þ v7=0:5;
B7 ¼ v1=0þ v2=0þ v3=0þ v4=0þ v5=0þ v6=0:5þ v7=1:

ð3Þ
2.4. Step 4: Fuzzify all historical data

In order to find out an equivalent fuzzy set using Eqs. (2) and (3)
to all historical data. The way to fuzzify a historical data is to find
an interval to which it belongs and assign the corresponding lin-
guistic value to it. For example, the historical data on August 1,
1996, the actual daily average temperature and daily cloud density
are 27.1 �C and 100%, respectively and they belong to interval
u5 = [27.0,28.0) and interval v7 = [85.71,100.0], respectively.
Hence, we assign the fuzzy set A5 corresponding to interval u5 of
the main-factor and assign the fuzzy set B7 corresponding to inter-
val v7 of the second-factor, respectively. According to Tables 1 and
2, the results of fuzzification are listed in Table 3 by using Eqs. (2)
and (3) to fuzzify the historical data of the daily average tempera-
ture and the daily cloud density.

Let YA(t) and YB(t) be two historical data time series on day t.
The purpose of Step 4 is to get two fuzzy time series FA(t) and
FB(t) on YA(t) and YB(t). Each element of YA(t) and YB(t) is a real
number with respect to the actual daily average temperature and
the actual daily cloud density, respectively. But each element of
FA(t) and FB(t) is a fuzzy set with respect to the corresponding
element of YA(t) and YB(t), respectively. For example, in Table 3,
YA(August-1-1996) = 27.1 and FA(August-1-1996) = A5,YB(August-
1-1996) = 100 and FB(August-1-1996) = B7,YA(August-7-1996) =
29.0 and FA(August-7-1996) = A7,YB(August-7-1996) = 71 and
FB(August-7-1996) = B5, and so on.
2.5. Step 5: Construct all two-factor kth-order fuzzy relationship
groups

After two fuzzy time series FA(t) and FB(t) have been created,
we can find out all fuzzy relationships under different orders.
The way to construct all two-factor first-order fuzzy relationship
is to find any relationship consisting of the type
(FA(t � 1),FB(t � 1)) ? FA(t), where FA(t � 1),FB(t � 1), and FA(t)
are called the current state and the next state, respectively. Then
a fuzzy relationship can be obtained by replacing
FA(t � 1),FB(t � 1), and FA(t) with the corresponding fuzzy set.
For example, (FA(August-1-1996), FB(August-1-1996)) ? FA(Au-
gust-2-1996) is a relationship, and a fuzzy relationship
(A5,B7) ? A6 is obtained by replacing (FA(August-1-1996), FB(Au-
gust-1-1996)) and FA(August-2-1996) to (A5,B7) and A6, respec-
tively. Another fuzzy relationship (A6,B5) ? A7 is got as
(FA(August-3-1996), FB(August-3-1996)) and FA(August-4-1996).



Table 4
Two-factor second-order fuzzy relationship groups.

Days Fuzzy relationships Group ID

August-3-1996 (A5,B7), (A6,B6) ? A6 1
August-4-1996 (A6,B6), (A6,B5) ? A7 2
August-5-1996 (A6,B5), (A7,B4) ? A6 3
August-6-1996 (A7,B4), (A6,B4) ? A6 4
August-7-1996 (A6,B4), (A6,B7) ? A7 5
August-8-1996 (A6,B7), (A7,B5) ? A6 6
August-9-1996 (A7,B5), (A6,B2) ? A5 7
August-10-1996 (A6,B2), (A5,B5) ? A6 8
August-11-1996 (A5,B5), (A6,B4) ? A6 9
August-12-1996 (A6,B4), (A6,B4) ? A6 10
August-13-1996 (A6,B4), (A6,B6) ? A7 11
August-14-1996 (A6,B6), (A7,B4) ? A5 12
August-15-1996 (A7,B4), (A5,B6) ? A4 13
August-16-1996 (A5,B6), (A4,B5) ? A5 14
August-17-1996 (A4,B5), (A5,B6) ? A5 15
August-18-1996 (A5,B6), (A5,B3) ? A7 16
August-19-1996 (A5,B3), (A7,B2) ? A7 17
August-20-1996 (A7,B2), (A7,B2) ? A7 18
August-21-1996 (A7,B2), (A7,B2) ? A7 18
August-22-1996 (A7,B2), (A7,B2) ? A7 18
August-23-1996 (A7,B2), (A7,B4) ? A6 19
August-24-1996 (A7,B4), (A6,B3) ? A6 20
August-25-1996 (A6,B3), (A6,B3) ? A6 21
August-26-1996 (A6,B3), (A6,B3) ? A6 21
August-27-1996 (A6,B3), (A6,B3) ? A7 21
August-28-1996 (A6,B3), (A7,B3) ? A5 22
August-29-1996 (A7,B3), (A5,B1) ? A4 23
August-30-1996 (A5,B1), (A4,B2) ? A4 24
August-31-1996 (A4,B2), (A4,B3) ? A5 25
September-1-1996 (A4,B3), (A5,B2) ? # 26

Table 3
Fuzzified the daily average temperature and the daily cloud density from August-1-
1996 to August-31-1996 in Taipei, Taiwan.

Days Actual daily
average
temperature (�C)

Fuzzy
sets
FA(t)

Actual daily
cloud
density (%)

Fuzzy
sets
FB(t)

August-1-1996 27.1 A5 100 B7

August-2-1996 28.9 A6 78 B6

August-3-1996 28.9 A6 68 B5

August-4-1996 29.3 A7 44 B4

August-5-1996 28.8 A6 56 B4

August-6-1996 28.7 A6 89 B7

August-7-1996 29.0 A7 71 B5

August-8-1996 28.2 A6 28 B2

August-9-1996 27.0 A5 70 B5

August-10-1996 28.3 A6 44 B4

August-11-1996 28.9 A6 48 B4

August-12-1996 28.1 A6 76 B6

August-13-1996 29.9 A7 50 B4

August-14-1996 27.6 A5 84 B6

August-15-1996 26.8 A4 69 B5

August-16-1996 27.6 A5 78 B6

August-17-1996 27.9 A5 39 B3

August-18-1996 29.0 A7 20 B2

August-19-1996 29.2 A7 24 B2

August-20-1996 29.8 A7 25 B2

August-21-1996 29.6 A7 19 B2

August-22-1996 29.3 A7 46 B4

August-23-1996 28.0 A6 41 B3

August-24-1996 28.3 A6 34 B3

August-25-1996 28.6 A6 29 B3

August-26-1996 28.7 A6 31 B3

August-27-1996 29.0 A7 41 B3

August-28-1996 27.7 A5 14 B1

August-29-1996 26.2 A4 28 B2

August-30-1996 26.0 A4 33 B3

August-31-1996 27.7 A5 26 B2
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In order to construct all two-factor kth-order (kP 2) fuzzy rela-
tionships, it’s necessary to find any relationship consisting of the
type (FA(t � k), FB(t � k)), . . . , (FA(t � 2), FB(t � 2)), (FA(t � 1),
FB(t � 1)) ? FA(t), where (FA(t � k)), FB(t � k)), . . . , (FA(t � 2),
FB(t � 2)), (FA(t � 1), FB(t � 1)) and FA(t) are called the current state
and the next state, respectively. Then a kth-order fuzzy relation-
ship is obtained by replacing the corresponding fuzzy set. For
example, suppose k = 2, a fuzzy relationship (A5,B7), (A6,B6) ? A6

is obtained from (FA(August-1-1996), FB(August-1-1996)), (FA(Au-
gust-2-1996), FB(August-2-1996)) ? FA (August-3-1996). Accord-
ing to Table 3, the complete two-factor second-order fuzzy
relationships are listed in Table 4, where there are 26 groups and
each group of two-factor second-order fuzzy relationship is fuzz-
ified from the historical data of the daily average temperature
and the daily cloud density ranged from August-1-1996 to Au-
gust-31-1996.

In Table 4, group 26 consists of the fuzzy relationship (A4,B3),
(A5,B2) ? # as it is created by the relationship (FA(August-30-
1996), FB(August-30-1996)), (FA(August-31-1996), FB(August-31-
1996)) ? FA(September-1-1996), since the linguistic value of
FA(September-1-1996) is unknown within the historical data from
August-1-1996 to August-31-1996. Hence, we use symbol ‘‘#” to
denote the unknown value (For the sake of illustration, here we as-
sume that we do not have the historical data of temperature and
cloud density on September-1-1996.).

2.6. Step 6: Calculate the forecasting value and create all fuzzy forecast
rules based on all fuzzy relationship groups

In this step, it is necessary to calculate the forecasting value and
create all fuzzy forecast rules based on all two-factor kth-order fuz-
zy relationship groups, respectively, and then find out the matched
forecast rule to get the forecast value.
Suppose the two-factor kth-order fuzzified historical data before
day i are (Aik,Bik), . . . , (Ai2,Bi2) and (Ai1,Bi1), where Aik, . . . ,Ai2 and Ai1

are fuzzified values of the main-factor of day i � k, . . ., i � 2, and
i � 1, respectively, Bik, . . . ,Bi2 and Bi1 are fuzzified values of the sec-
ond-factor of day i � k, . . . , i � 2, and i � 1, respectively, and k P 2.

First, we calculate the forecasting value using the two-factor
kth-order fuzzy relationship groups based on the following cases.

Case 1: one member only
Suppose there is a group which has a member having the two-
factor kth-order fuzzy relationship shown as follows:

ðAik;BikÞ; . . . ; ðAi2;Bi2Þ; ðAi1; Bi1Þ ! Aj;

where the maximum membership value of Aj occurs at interval
uj, and the midpoint of interval uj is mj, then the forecasting va-
lue of day i is mj. For example, the group 1 in Table 4. The fuzzy
relationship is (A5,B7), (A6,B6) ? A6, and the midpoint m6 of A6 is
28.5. Then the forecast value of day i(i.e. August-3-1996) is 28.5.
Case 2: multiple members
Suppose there is a group which has multiple members and each
member has a two-factor kth-order fuzzy relationship shown as
follows:

ðAik;BikÞ; . . . ; ðAi2;Bi2Þ; ðAi1;Bi1Þ ! Aj1;

ðAik;BikÞ; . . . ; ðAi2;Bi2Þ; ðAi1;Bi1Þ ! Aj2;

..

.

ðAik;BikÞ; . . . ; ðAi2;Bi2Þ; ðAi1;Bi1Þ ! Ajp;

where the maximum membership values of Aj1,Aj2, . . . and Ajp

occur at intervals uj1,uj2, . . ., and ujp, respectively, and the mid-
points of uj1,uj2, . . . and ujp are mj1,mj2, . . . and mjp, respectively,
then the forecasting value of day i is the average of mj1,mj2, . . .

and mjp. For example, the group 21 in Table 4, the midpoint
m6 of A6 for the first member is 28.5, and the midpoint m7 of
A7 for the second member is 29.5. Then the forecast value is
(28.5 + 29.5)/2 = 29.0.
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Case 3: a member with an unknown value
Suppose there is a group which has a member having the two-
factor kth-order fuzzy relationship with an unknown value
shown as follows:
ðAik;BikÞ; . . . ; ðAi2;Bi2Þ; ðAi1;Bi1Þ ! #;
where the symbol ‘‘#” denotes an unknown value, the maximum
membership values of Aik,Ai(k�1), . . . and Ai1 occur at intervals
uik,ui(k�1), . . . and ui1, respectively, and the midpoints of
uik,ui(k�1), . . . and ui1 are mik,mi(k�1), . . . and mi1, respectively,
then the forecasting value of day i is calculated as follows:

mi1 þ
Xk

j¼2

ðmiðj�1Þ �mijÞ
2ðj�1Þ : ð4Þ
In this paper, we use Eq. (4) to forecast the unknown value. The
method of Eq. (4) is based on the latest past linguistic value, plus
the half of the difference between one day earlier and two days
earlier, plus the quarter of the difference between two days ear-
lier and three days earlier and so on. For example, the group 26
in Table 4, the fuzzy relationship is (A4,B3), (A5,B2) ? #, and the
midpoint m5 of A5 is 27.5, and the midpoint m4 of A4 is 26.5. Then
the forecast value is 27.5 + (27.5–26.5)/2 = 28.0.

The complete forecasted values for all groups in Table 4 are
listed in Table 5, where symbol mj(1 6 j 6 9) denotes the mid-
point of interval uj (1 6 j 6 9). Now we are going to create all fuz-
zy forecast rules. A forecast rule consists of two parts, the
matching part filled up with the current state of the fuzzy rela-
tionships of the same group, and the forecasting part filled up
with the above mentioned forecasted value. Since all fuzzy rela-
tionships of the same group have the same current state, it is rea-
sonable to apply the current state in the matching part of a fuzzy
forecast rule. The complete two-factor second-order fuzzy fore-
cast rules created based on Table 5 are listed in Table 6. How
to forecast the next training or testing data YA(t) based on all
forecast rules is described in the next step.
le 5
complete forecasted values for all groups of the two-factors second-order fuzzy

tionships.

roup ID Fuzzy relationships Forecasted values

(A5,B7), (A6,B6) ? A6 28.5 (=m6)
(A6,B6), (A6,B5) ? A7 29.5 (=m7)
(A6,B5), (A7,B4) ? A6 28.5 (=m6)
(A7,B4), (A6,B4) ? A6 28.5 (=m6)
(A6,B4), (A6,B7) ? A7 29.5 (=m7)
(A6,B7), (A7,B5) ? A6 28.5 (=m6)
(A7,B5), (A6,B2) ? A5 27.5 (=m5)
(A6,B2), (A5,B5) ? A6 28.5 (=m6)
(A5,B5), (A6,B4) ? A6 28.5 (=m6)

0 (A6,B4), (A6,B4) ? A6 28.5 (=m6)
1 (A6,B4), (A6,B6) ? A7 29.5 (=m7)
2 (A6,B6), (A7,B4) ? A5 27.5 (=m5)
3 (A7,B4), (A5,B6) ? A4 26.5 (=m4)
4 (A5,B6), (A4,B5) ? A5 27.5 (=m5)
5 (A4,B5), (A5,B6) ? A5 27.5 (=m5)
6 (A5,B6), (A5,B3) ? A7 29.5 (=m7)
7 (A5,B3), (A7,B2) ? A7 29.5 (=m7)
8 (A7,B2), (A7,B2) ? A7 29.5 (=m7)
9 (A7,B2), (A7,B4) ? A6 28.5 (=m6)
0 (A7,B4), (A6,B3) ? A6 28.5 (=m6)
1 (A6,B3), (A6,B3) ? A6, 29.0 (=(m6 + m7)/ 2)

(A6,B3), (A6,B3) ? A7

2 (A6,B3), (A7,B3) ? A5 27.5 (=m5)
3 (A7,B3), (A5,B1) ? A4 26.5 (=m4)
4 (A5,B1), (A4,B2) ? A4 26.5 (=m4)
5 (A4,B2), (A4,B3) ? A5 27.5 (=m5)
6 (A4,B3), (A5,B2) ? # 28.0 (calculated by case 3 of Step 6)
2.7. Step 7: Forecast the training or the testing data based on the
forecast rules

When we are going to forecast the data YA(t) based on the fore-
cast rules, it is necessary to find out the matched forecast rule to
get the forecasted value. If we use the two-factor second-order
forecast rules in Table 6 to forecast the data YA(t), we need to find
out the corresponding linguistic values of (FA(t � 2), FB(t � 2)) and
(FA(t � 1), FB(t � 1)) with respect to the data (YA(t � 2), YB(t � 2))
and (YA(t � 2), YB(t�2)), and compare with all matching parts of
the forecast rules, then we can get a forecasted value from the fore-
casting part of the matched forecast rule. For example, if we want
to forecast the data YA(August-3-1996), it is necessary to find
out the corresponding linguistic value of (FA(August-1-1996),
FB(August-1-1996)) (i.e. (A5,B7)) and (FA (August-2-1996), FB(Au-
gust-2-1996)) (i.e. (A6,B6)) with respect to (YA(August-1-1996),
YB(August-1-1996)) and (YA(August-2-1996), YB(August-2-1996))
in Table 3 and get the following pattern:

‘‘if (FA(August-1-1996), FB(August-1-1996)) equals (A5,B7), and
(FA(August-2-1996), FB(August-2-1996)) equals (A6,B6) then fore-
cast YA (August-3-1996) = ?”

If we replace the values August-1-1996, August-2-1996 and Au-
gust-3-1996 in the above pattern with the symbols t � 2, t � 1, and
t, respectively, then the above pattern equals the following pattern:

‘‘if (FA(t � 2), FB(t � 2)) equals (A5,B7), and (FA(t � 1), FB(t � 1))
equals (A6,B6) then forecast YA(t) = ?”

After using the rule 1 listed in Table 6, a forecasted value (i.e.
28.5) is got for the forecasted value for the above pattern.

As another example, if we want to forecast the data YA(September-
1-1996), it is necessary to find out the corresponding linguistic value
of (FA(August-30-1996), FB(August-30-1996)) (i.e. (A4,B3)) and
(FA(August-31-1996), FB(August-31-1996)) (i.e. (A5,B2)) with respect
to (YA(August-30-1996), YB(August-30-1996)) and (YA(August-31-
1996), YB(August-31-1996)) in Table 3 and get the following pattern:

‘‘if (FA(August-30-1996), FB(August-30-1996)) equals (A4,B3),
and (FA(August-31-1996), FB(August-31-1996)) equals (A5,B2) then
forecast YA(September-1-1996) = ?”

Like before, after using the rule 26 listed in Table 6, a forecasted
value (i.e. 28.0) is got for the forecasted value for the above pattern.

By the method, then we compare the above pattern with all k-or-
der fuzzy forecast rules and get a forecasted value of the matched
one. The complete forecasted results based on the two-factor sec-
ond-order fuzzy forecast rules in Table 6 are listed in Table 7.
3. Particle swarm optimization

The particle swarm optimization (PSO) is a novel multi-agent
optimization system (MAOS) inspired by social behavior metaphor
developed by Kennedy and Eberhart (Eberhart & Shi, 1998;
Kennedy, Eberhart, & Shi, 2001). It is unlike an evolutionary algo-
rithm, however, in that each potential solution is also assigned a
randomized velocity, and the potential solutions, called particles,
are then ‘‘flown” through the multi-dimensional problem space.
The PSO method was generally found to perform better than other
algorithms (for example, genetic algorithm, memetic algorithm,
antcolony systems, and shuffled frog leaping) in terms of success
rate and solution quality (Elbeltagi, Hegazy, & Grierson, 2005). In
PSO, instead of using more traditional genetic operators, each par-
ticle (individual) adjusts its ‘‘flying” according to its own flying
experience and its companions’ flying experience.
3.1. Standard particle swarm optimization

In the standard particle swarm optimization (Shi & Eberhart,
2001), each particle i has a position represented by a position



Table 6
The complete two-factors second-order fuzzy forecast rules.

Rule No. Matching part Forecasting part

1 if (FA(t � 2), FB(t � 2)) equals (A5,B7), and (FA(t � 1), FB(t � 1)) equals (A6,B6) then forecast Y(t) = 28.5
2 if (FA(t � 2), FB(t � 2)) equals (A6,B6), and (FA(t � 1), FB(t � 1)) equals (A6,B5) then forecast Y(t) = 29.5
3 if (FA(t � 2), FB(t � 2)) equals (A6,B5), and (FA(t � 1), FB(t � 1)) equals (A7,B4) then forecast Y(t) = 28.5
4 if (FA(t � 2), FB(t � 2)) equals (A7,B4), and (FA(t � 1), FB(t � 1)) equals (A6,B4) then forecast Y(t) = 28.5
5 if (FA(t � 2), FB(t � 2)) equals (A6,B4), and (FA(t � 1), FB(t � 1)) equals (A6,B7) then forecast Y(t) = 29.5
6 if (FA(t � 2), FB(t � 2)) equals (A6,B7), and (FA(t � 1), FB(t � 1)) equals (A7,B5) then forecast Y(t) = 28.5
7 if (FA(t � 2), FB(t � 2)) equals (A7,B5), and (FA(t � 1), FB(t � 1)) equals (A6,B2) then forecast Y(t) = 27.5
8 if (FA(t � 2), FB(t � 2)) equals (A6,B2), and (FA(t � 1), FB(t � 1)) equals (A5,B5) then forecast Y(t) = 28.5
9 if (FA(t � 2), FB(t � 2)) equals (A5,B5), and (FA(t � 1), FB(t � 1)) equals (A6,B4) then forecast Y(t) = 28.5
10 if (FA(t � 2), FB(t � 2)) equals (A6,B4), and (FA(t � 1), FB(t � 1)) equals (A6,B4) then forecast Y(t) = 28.5
11 if (FA(t � 2), FB(t � 2)) equals (A6,B4), and (FA(t � 1), FB(t � 1)) equals (A6,B6) then forecast Y(t) = 29.5
12 if (FA(t � 2), FB(t � 2)) equals (A6,B6), and (FA(t � 1), FB(t � 1)) equals (A7,B4) then forecast Y(t) = 27.5
13 if (FA(t � 2), FB(t � 2)) equals (A7,B4), and (FA(t � 1), FB(t � 1)) equals (A5,B6) then forecast Y(t) = 26.5
14 if (FA(t � 2), FB(t � 2)) equals (A5,B6), and (FA(t � 1), FB(t � 1)) equals (A4,B5) then forecast Y(t) = 27.5
15 if (FA(t � 2), FB(t � 2)) equals (A4,B5), and (FA(t � 1), FB(t � 1)) equals (A5,B6) then forecast Y(t) = 27.5
16 if (FA(t � 2), FB(t � 2)) equals (A5,B6), and (FA(t � 1), FB(t � 1)) equals (A5,B3) then forecast Y(t) = 29.5
17 if (FA(t � 2), FB(t � 2)) equals (A5,B3), and (FA(t � 1), FB(t � 1)) equals (A7,B2) then forecast Y(t) = 29.5
18 if (FA(t � 2), FB(t � 2)) equals (A7,B2), and (FA(t � 1), FB(t � 1)) equals (A7,B2) then forecast Y(t) = 29.5
19 if (FA(t � 2), FB(t � 2)) equals (A7,B2), and (FA(t � 1), FB(t � 1)) equals (A7,B4) then forecast Y(t) = 28.5
20 if (FA(t � 2), FB(t � 2)) equals (A7,B4), and (FA(t � 1), FB(t � 1)) equals (A6,B3) then forecast Y(t) = 28.5
21 if (FA(t � 2), FB(t � 2)) equals (A6,B3), and (FA(t � 1), FB(t � 1)) equals (A6,B3) then forecast Y(t) = 29.0
22 if (FA(t � 2), FB(t � 2)) equals (A6,B3), and (FA(t � 1), FB(t � 1)) equals (A7,B3) then forecast Y(t) = 27.5
23 if (FA(t � 2), FB(t � 2)) equals (A7,B3), and (FA(t � 1), FB(t � 1)) equals (A5,B1) then forecast Y(t) = 26.5
24 if (FA(t � 2), FB(t � 2)) equals (A5,B1), and (FA(t � 1), FB(t � 1)) equals (A4,B2) then forecast Y(t) = 26.5
25 if (FA(t � 2), FB(t � 2)) equals (A4,B2), and (FA(t � 1), FB(t � 1)) equals (A4,B3) then forecast Y(t) = 27.5
26 if (FA(t � 2), FB(t � 2)) equals (A4,B3), and (FA(t � 1), FB(t � 1)) equals (A5,B2) then forecast Y(t) = 28.0 (calculated by case 3 of Step 6)

Table 7
The complete forecasted results based on the two-factors second-order fuzzy forecast rules in Table 6.

Days Actual daily average
temperature (�C)

Fuzzy sets
FA(t)

Actual daily
cloud density (%)

Fuzzy sets
FB(t)

Matched rule
no.

Forecasted daily average
temperature (�C)

August-1-1996 27.1 A5 100 B7 Not forecasted
August-2-1996 28.9 A6 78 B6 Not forecasted
August-3-1996 28.9 A6 68 B5 1 28.5
August-4-1996 29.3 A7 44 B4 2 29.5
August-5-1996 28.8 A6 56 B4 3 28.5
August-6-1996 28.7 A6 89 B7 4 28.5
August-7-1996 29.0 A7 71 B5 5 29.5
August-8-1996 28.2 A6 28 B2 6 28.5
August-9-1996 27.0 A5 70 B5 7 27.5
August-10-1996 28.3 A6 44 B4 8 28.5
August-11-1996 28.9 A6 48 B4 9 28.5
August-12-1996 28.1 A6 76 B6 10 28.5
August-13-1996 29.9 A7 50 B4 11 29.5
August-14-1996 27.6 A5 84 B6 12 27.5
August-15-1996 26.8 A4 69 B5 13 26.5
August-16-1996 27.6 A5 78 B6 14 27.5
August-17-1996 27.9 A5 39 B3 15 27.5
August-18-1996 29.0 A7 20 B2 16 29.5
August-19-1996 29.2 A7 24 B2 17 29.5
August-20-1996 29.8 A7 25 B2 18 29.5
August-21-1996 29.6 A7 19 B2 18 29.5
August-22-1996 29.3 A7 46 B4 18 29.5
August-23-1996 28.0 A6 41 B3 19 28.5
August-24-1996 28.3 A6 34 B3 20 28.5
August-25-1996 28.6 A6 29 B3 21 29.0
August-26-1996 28.7 A6 31 B3 21 29.0
August-27-1996 29.0 A7 41 B3 21 29.0
August-28-1996 27.7 A5 14 B1 22 27.5
August-29-1996 26.2 A4 28 B2 23 26.5
August-30-1996 26.0 A4 33 B3 24 26.5
August-31-1996 27.7 A5 26 B2 25 27.5
September-1-1996 N/A N/A N/A N/A 26 28.0

(Suppose we dont know historical data of the daily average temperature and the daily cloud density in September-1-1996).

L.-Y. Hsu et al. / Expert Systems with Applications 37 (2010) 2756–2770 2761
vector Pi. A swarm of particles moves through a multi-dimen-
sional problem space and each particle i with the velocity repre-
sented by a vector Vi. Each particle keeps track of its own best
position in each iteration (or time cycle), which is associated
with the best experience it has achieved and denotes Pbest. The
best position among all the particles obtained in the population
denotes PGbest. For each iteration, the position Pbest of its own best
and the position PGbest of the best particle of swarm are calcu-
lated as the best fitness of all particles. Accordingly, each particle
changing the velocity this way enables the particle Pi to search
around its individual best position Pbest and the global best posi-
tion PGbest as follows:
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Vi¼x�Viþc1� rand1ðÞ�ðPbest�PiÞþc2� rand2ðÞ�ðPGbest�PiÞ;
ð5Þ

where c1 and c2 are positive acceleration constants (usually
c1 = c2=2), rand1() and rand2() are uniformly distributed random
numbers in the range [0,1], and x is an inertia weight employed
as an improvement proposed by Shi & Eberhart (1998). Then the
particle flies toward a new position according to Eq. (6).

Pi ¼ Pi þ Vi: ð6Þ

The whole running procedure of the standard PSO is described in
Algorithm 1.

Algorithm 1 (Standard PSO algorithm).

1. initialize all particles’ positions Pi and velocities Vi, for
1 6 i 6 NumberOfParticles.

2. while the stop condition (the optimal solution is found or
the maximal moving steps are reached) is not satisfied do

3. for particle i, (1 6 i 6 NumberOfParticles) do
4. calculate the fitness value of particle i.
5. update the personal best position of particle i according

to the fitness value.
6. end for
7. update the global best position of all particles according to

the fitness value.
8. for particle i, (1 6 i 6 NumberOfParticles) do
9. move particle i to another position according to Eqs. (5)

and (6).
10. end for
11. end while
3.2. Turbulent particle swarm optimization

In the standard PSO, it has been shown that the trajectories of
the particles oscillate in different sinusoidal waves and converge
quickly, sometimes prematurely (Liu & Abraham, 2005). Such situ-
ations could occur even in the early stages of the search. In fact,
this does not even guarantee that the algorithm has converged to
a local minimum and it merely means that all the particles have
converged to the best position discovered so far by the swarm.
During each iteration, the particle is attracted toward the location
of the best fitness achieved so far by the particle itself and by the
location of the best fitness achieved so far across the whole swarm.
In order to guide the particles effectively in the search space, the
maximum moving distance during an iteration and its moving
range must be clamped in between the maximum velocity. The
method to drive those lazy particles (i.e. the particles’ velocity is
small than threshold) and so that they can explore a better solu-
tion, named turbulent particle swarm optimization (TPSO) which
is shown as follows:

Vi ¼

Vmax if Vi > Vmax;

�Vmax if Vi < �Vmax;

�Vmax þ 2� Vmax � randðÞ if jVij < Vs;

Vi otherwise;

8>>><
>>>:

ð7Þ

where the term Vi is limited to the range ±Vmax, rand() is a uniformly
distributed random number in the range [0,1], Vs is the minimum
velocity threshold, a threshold parameter to limit the minimum of
the particles’ velocity. If Vs is large, it will shorten the oscillation
period, and it provides a great probability for the particles to across
local optimal using the same number of iterations. But a large Vs

compels particles in the quick ‘‘flying” state, which leads them
not to search the local optimal and forcing them not to refine the
search. In other words, a large Vs facilitates a global search, and a
small Vs facilitates a local search.
The whole running procedure of the TPSO is described in Algo-
rithm 2.

Algorithm 2 (TPSO algorithm).

1. initialize all particles’ positions Pi and velocities Vi, for
1 6 i 6 NumberOfParticles.

2. while the stop condition (the optimal solution is found
or the maximal moving steps are reached) is not sat-
isfied do

3. for particle i, (1 6 i 6 NumberOfParticles) do
4. calculate the fitness value of particle i.
5. update the personal best position of particle i according

to the fitness value.
6. end for
7. update the global best position of all particles according to

the fitness value.
8. for particle i, (1 6 i 6 NumberOfParticles) do
9. move particle ito another position according to Eqs. (5)–

(7).
10. end for
11. end while
4. The new proposed forecast model

A new forecast model ‘‘modified turbulent particle swarm
optimization”, named MTPSO, consisting of the fuzzy time series
and the TPSO, is proposed in this paper. It can deal with the
time-invariant model for the temperature prediction and fore-
casting TAIFEX. We describe the overall procedure, and then pro-
vide details of each step of the forecasting process by means of
an example. The detailed descriptions of the MTPSO model for
the temperature prediction are given in the following.

In the MTPSO model, for the training phase, we use the mod-
ified turbulent particle swarm optimization to train all two-fac-
torkth-other fuzzy forecast rules under all training data. Once
all fuzzy forecast rules have been well trained, for the testing
phase, we can use the MTPSO model to forecast the new testing
data. The detailed descriptions of MTPSO model are given as
follows.

Let the number of the intervals of the main-factor be x, the
lower bound and the upper bound of the universe of discourse
on historical data YA(t) of the main-factor be b0 and bx, respec-
tively. Let the number of the intervals of the second-factor be y,
the lower bound and the upper bound of the universe of discourse
on historical data YB(t) of the second-factor be d0 and dy, respec-
tively. A particle is a vector consisting of x + y � 2 elements (i.e.
b1,b2, . . . ,bj�1,bj, . . . , bx�2,bx�1, and d1,d2, . . . ,dk�1,dk, . . . ,dy�2,dy�1

where 1 < j 6 x � 1, bj�1 6 bj and 1 < k 6 y � 1, dk�1 6 dk); based
on these x + y � 2 elements, define the x + y intervals as
u1 = [b0,b1),u2 = [b1,b2), . . . ,uj = [bj�1,bj), . . . ,ux = [bx�1,bx], and
v1 = [d0,d1),v2 = [d1,d2), . . . ,vk = [dk�1,dk), . . . ,vy = [dy�1,dy], respec-
tively. If a particle moves to another position, the elements of
the corresponding new vector need to be sorted to ensure that
each element bj (1 < j 6 x � 1) and dk (1 < k 6 y � 1) arrange in
an ascending order, respectively.

The MTPSO model exploits the intervals denoted by each parti-
cle to create an independent group of fuzzy forecast rules to fore-
cast all main-factor historical training data and get the forecasted
accuracy for each particle. In order to compare the performance
of the proposed method with the existing methods, the average
forecasting error rate (AFER) value shown in Eq. (8) is used to rep-
resent the forecasted accuracy of a particle for the training phase
for the temperature prediction, and the mean square error (MSE)
value shown in Eq. (9) is used to represent the forecasted accuracy
of a particle for the training phase for forecasting TAIFEX, respec-



Table 8
The initial position of particles 1–5.

b1 b2 b3 b4 b5 b6 b7 b8 d1 d2 d3 d4 d5 d6 AFER

Particle 1 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 14.29 28.57 42.86 57.14 71.43 85.71 1.06
Particle 2 23.96 25.06 25.98 27.44 28.41 29.16 30.02 30.80 13.67 27.37 44.79 60.47 69.39 80.36 0.94
Particle 3 23.89 24.65 25.91 26.88 28.44 29.19 30.02 30.93 14.11 30.55 43.16 62.78 70.25 88.55 0.91
Particle 4 24.02 25.19 26.56 27.08 28.22 29.17 30.14 31.25 11.48 24.06 45.24 52.17 66.78 83.55 0.95
Particle 5 24.32 25.01 25.92 27.06 28.25 29.30 29.86 31.23 8.97 30.57 41.87 52.52 68.26 82.19 0.97

Table 9
The initial velocities of particles 1–5.

b1 b2 b3 b4 b5 b6 b7 b8 d1 d2 d3 d4 d5 d6

Particle 1 �1.67 3.81 �0.20 0.61 1.16 1.62 1.17 1.85 1.02 21.40 1.52 10.59 46.67 32.21
Particle 2 �1.82 0.88 �3.70 �2.46 3.03 1.68 �4.86 0.62 �4.54 40.50 �21.78 �43.50 �2.34 48.37
Particle 3 4.22 0.61 1.52 2.73 �3.94 �4.99 0.42 �4.93 �4.87 �30.43 28.71 11.86 �48.45 39.09
Particle 4 2.62 4.07 2.59 �1.19 �1.69 0.04 0.65 2.67 27.99 �1.59 30.22 �2.90 �29.72 7.96
Particle 5 1.67 1.77 4.43 2.70 2.37 3.66 4.91 0.04 12.91 29.26 �5.14 2.44 �32.85 �36.93

Table 10
The second positions of particles 1–5.

b1 b2 b3 b4 b5 b6 b7 b8 d1 d2 d3 d4 d5 d6 AFER

Particle 1 23.47 25.92 26.07 27.16 28.44 29.53 30.35 31.54 14.56 35.41 43.38 61.50 85.18 95.97 0.85
Particle 2 23.35 24.80 24.95 26.19 28.56 29.34 29.69 31.10 12.71 36.76 42.42 49.53 69.47 100.00 1.45
Particle 3 24.83 25.15 26.36 27.26 27.69 27.70 29.45 30.14 12.65 21.42 51.77 55.71 66.33 100.00 1.32
Particle 4 24.56 25.43 26.15 26.36 28.11 29.22 30.11 31.46 24.65 35.37 50.52 64.16 70.58 95.03 1.16
Particle 5 24.31 25.11 27.23 27.66 29.18 30.27 30.89 31.52 18.89 39.32 41.84 60.75 65.33 78.60 1.30

Table 11
The second velocities of particles 1–5.

b1 b2 b3 b4 b5 b6 b7 b8 d1 d2 d3 d4 d5 d6

Particle 1 �0.53 1.07 �0.08 0.16 0.44 0.53 0.35 0.54 0.27 6.84 0.52 4.36 13.75 10.26
Particle 2 �0.62 �0.11 �1.18 �1.24 0.94 0.53 �1.47 0.30 �0.97 15.05 �8.03 �10.94 0.08 22.00
Particle 3 1.27 0.18 0.46 0.82 �1.18 �1.50 0.13 �1.48 �1.46 �9.13 8.61 3.56 �14.53 11.73
Particle 4 0.54 0.23 �0.41 �0.72 �0.10 0.05 �0.03 0.21 13.16 11.31 5.28 18.41 �2.62 11.48
Particle 5 �0.01 0.10 1.31 0.61 0.93 0.96 1.65 �0.34 9.92 8.76 �0.02 12.81 �7.51 �3.59
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tively. The lower the AFER (or MSE) value is, the better the fore-
casted accuracy is.

AFER¼
Pn

i¼1
jforecasted value of day i�actual value of day ij

actual value of day i

n
�100%: ð8Þ

MSE¼
Pn

i¼1ðforecasted value of day i�actual value of day iÞ2

n
: ð9Þ

For the training phase, the MTPSO algorithm moves all particles to
another position according to Eqs. (5)–(7) and the intervals of the
main-factor and the second-factor of all particles are sorted in an
ascending order, respectively. Then repeat the steps mentioned
above to evaluate the forecasted accuracy of all particles until the
pre-defined stop condition (the optimal solution is found or the
maximal moving steps are reached) is satisfied. If the stop condition
is satisfied, then all two-factor kth-other fuzzy forecast rules trained
by the best one of all personal best positions of all particles are cho-
sen to be the final result. For the testing phase, the MTPSO algo-
rithm uses all well trained two-factor kth-other fuzzy forecast
rules to forecast the new testing data. The testing phase of the
MTPSO algorithm is to perform a two-factor kth-other fuzzy fore-
cast rules table searching problem. The detailed procedure of the
MTPSO algorithm for the training phase and the testing phase are
described in Algorithms 3 and 4, respectively.
Algorithm 3 (The MTPSO algorithm for training phase).

1. initialize all particles’ positions Pi and velocities Vi, for
1 6 i 6 NumberOfParticles.

2. while the stop condition (the optimal solution is found or
the maximal moving steps are reached) is not satisfied do

3. for particle i, (1 6 i 6 NumberOfParticles) do
4. fuzzify all historical training data including the main-

factor and the second-factor, according to all intervals
defined by the current position of particle i.

5. construct all two-factor kth-order fuzzy relationship
groups according to all fuzzified historical training data.

6. create all fuzzy forecast rules based on all two-factor
kth-order fuzzy relationships.

7. forecast all historical training data according to all two-
factor kth-order fuzzy forecast rules.

8. calculate the fitness value of particle i based on Eq. (8) or
Eq. (9).

9. update the personal best position of particle i according
to the fitness value mentioned above.

10. end for
11. update the global position of all particles according to the

fitness value mentioned above.
12. for particle i, (1 6 i 6 NumberOfParticles) do
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13. move particle i to another position according to Eqs. (5)–
(7).

14. restrict the intervals of the main-factor and the sec-
ond-factor to the lower bound and the upper bound of
the universe of discourse within particle i, respectively.
That is, any value updated from Eqs. (5)–(7) is smaller
(larger) than the lower (upper) bound is set to the lower
(upper) bound.

15. sort the intervals of the main-factor and the second-fac-
tor within particle iin an ascending order, respectively.
Table 12
A comparison of the average forecasting error rate of the proposed method with those of

1st-order 2nd-order 3rd-order 4t

The proposed method
Average 0.51% 0.36% 0.36% 0.3
Minimum 0.45% 0.36% 0.34% 0.3
Standard deviation 0.04% 0.01% 0.03% 0.0

Lee et al.’s method (Lee et al., 2008)
Annealing constant 1st-order 2nd-order 3rd-order 4t
a = 0.25 0.79% 0.44% 0.42% 0.4
a = 0.5 0.84% 0.50% 0.45% 0.4
a = 0.9 0.79% 0.46% 0.42% 0.4

Lee et al.’s method (Lee et al., 2007)
Window basis 1st-order 2nd-order 3rd-order 4t

1.24% 0.74% 0.64% 0.7

Chen et al.’s method (Chen & Hwang, 2000)
Window basis w = 2 w = 3 w

2.88% 3.16% 3.2

Table 13
A comparison of the average forecasting error rate of the proposed method with those of

1st-order 2nd-order 3rd-order 4t

The proposed method
Average 0.50% 0.36% 0.35% 0.3
Minimum 0.41% 0.34% 0.33% 0.3
Standard deviation 0.04% 0.03% 0.02% 0.0

Lee et al.’s method (Lee et al., 2008)
Annealing constant 1st-order 2nd-order 3rd-order 4t
a = 0.25 0.66% 0.45% 0.42% 0.4
a = 0.5 0.66% 0.50% 0.47% 0.4
a = 0.9 0.62% 0.46% 0.45% 0.4

Lee et al.’s method (Lee et al., 2007)
Window basis 1st-order 2nd-order 3rd-order 4t

1.23% 0.78% 0.73% 0.8

Chen et al.’s method (Chen & Hwang, 2000)
Window basis w = 2 w = 3 w

3.04% 3.76% 4.0

Table 14
A comparison of the average forecasting error rate of the proposed method with those of

1st-order 2nd-order 3rd-order 4t

The proposed method
Average 0.48% 0.32% 0.35% 0.3
Minimum 0.41% 0.31% 0.34% 0.3
Standard deviation 0.05% 0.03% 0.00% 0.0

Lee et al.’s method (Lee et al., 2008)
Annealing constant 1st-order 2nd-order 3rd-order 4t
a = 0.25 0.64% 0.43% 0.47% 0.4
a = 0.5 0.69% 0.40% 0.38% 0.3
a = 0.9 0.66% 0.40% 0.40% 0.4

Lee et al.’s method (Lee et al., 2007)
Window basis 1st-order 2nd-order 3rd-order 4t

1.09% 0.92% 0.88% 1.0

Chen et al.’s method (Chen & Hwang, 2000)
Window basis w = 2 w = 3 w

2.75% 2.77% 3.3
16. end for
17. end while

Algorithm 4 (The MTPSO algorithm for testing phase).

1. if the corresponding matching pattern with respect to the new
testing data matches a trained fuzzy forecast rule.

2. then forecast the new testing data based on the forecasting part
of the matched fuzzy forecast rule.
the existing methods in June 1996 in the training phase.

h-order 5th-order 6th-order 7th-order 8th-order

3% 0.32% 0.33% 0.28% 0.30%
2% 0.31% 0.31% 0.28% 0.29%
1% 0.02% 0.03% 0.01% 0.02%

h-order 5th-order 6th-order 7th-order 8th-order
2% 0.42% 0.44% 0.40% 0.40%
2% 0.38% 0.43% 0.39% 0.46%
4% 0.42% 0.41% 0.46% 0.39%

h-order 5th-order 6th-order 7th-order 8th-order
2% 0.65% 0.66% 0.64% 0.65%

= 4 w = 5 w = 6 w = 7 w = 8
4% 3.33% 3.39% 3.53% 3.67%

the existing methods in July 1996 in the training phase.

h-order 5th-order 6th-order 7th-order 8th-order

6% 0.34% 0.34% 0.36% 0.34%
3% 0.32% 0.32% 0.34% 0.33%
2% 0.02% 0.02% 0.03% 0.01%

h-order 5th-order 6th-order 7th-order 8th-order
1% 0.41% 0.40% 0.41% 0.40%
4% 0.40% 0.38% 0.44% 0.42%
4% 0.44% 0.41% 0.40% 0.40%

h-order 5th-order 6th-order 7th-order 8th-order
3% 0.70% 0.71% 0.68% 0.69%

= 4 w = 5 w = 6 w = 7 w = 8
8% 4.17% 4.35% 4.38% 4.56%

the existing methods in August 1996 in the training phase.

h-order 5th-order 6th-order 7th-order 8th-order

4% 0.33% 0.34% 0.35% 0.36%
3% 0.33% 0.33% 0.34% 0.35%
0% 0.00% 0.01% 0.01% 0.00%

h-order 5th-order 6th-order 7th-order 8th-order
0% 0.41% 0.38% 0.40% 0.45%
7% 0.37% 0.39% 0.42% 0.45%
0% 0.36% 0.41% 0.39% 0.44%

h-order 5th-order 6th-order 7th-order 8th-order
7% 0.75% 0.76% 0.75% 0.73%

= 4 w = 5 w = 6 w = 7 w = 8
0% 3.40% 3.18% 3.15% 3.19%



Table 16
Historical data of the TAIFEX index and the TAIEX index from 8/3/1998 to 9/30/1998
Huarng (2001b).

Date TAIFEX index TAIEX index

8/3/1998 7552 7599
8/4/1998 7560 7593
8/5/1998 7487 7500
8/6/1998 7462 7472
8/7/1998 7515 7530
8/10/1998 7365 7372
8/11/1998 7360 7384
8/12/1998 7330 7352
8/13/1998 7291 7363
8/14/1998 7320 7348
8/15/1998 7300 7372
8/17/1998 7219 7274
8/18/1998 7220 7182
8/19/1998 7285 7293
8/20/1998 7274 7271
8/21/1998 7225 7213
8/24/1998 6955 6958
8/25/1998 6949 6908
8/26/1998 6790 6814
8/27/1998 6835 6813
8/28/1998 6695 6724
8/29/1998 6728 6736
8/31/1998 6566 6550
9/1/1998 6409 6335
9/2/1998 6430 6472
9/3/1998 6200 6251
9/4/1998 6403.2 6463
9/5/1998 6697.5 6756
9/7/1998 6722.3 6801
9/8/1998 6859.4 6942
9/9/1998 6769.6 6895
9/10/1998 6709.75 6804
9/11/1998 6726.5 6842
9/14/1998 6774.55 6860
9/15/1998 6762 6858
9/16/1998 6952.75 6973
9/17/1998 6906 7001
9/18/1998 6842 6962
9/19/1998 7039 7150
9/21/1998 6861 7029
9/22/1998 6926 7034
9/23/1998 6852 6962
9/24/1998 6890 6980
9/25/1998 6871 6980
9/28/1998 6840 6911
9/29/1998 6806 6885
9/30/1998 6787 6834
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3. else forecast the new testing data based on Eq. (4) proposed in
Section 2.

4. end if

An example for illustrating the MTPSO model during the
training phase is given in the following. In this example, the
MTPSO model includes the TPSO algorithm to train all two-fac-
tor second-order fuzzy forecast rules under all historical train-
ing data (i.e. YA(t) and YB(t) in Table 3, August-1-
1996 6 t 6 August-31-1996). The symbols bj for 1 6 j 6 8 de-
notes the interval bound of the universe of discourse on YA(t),
and dk for 1 6 k 6 6 denotes the interval bound of the universe
of discourse on YB(t). For the symbols in Eqs. (5)–(7), a position
vector Pi consists of two parts bj (1 6 j 6 8) and dk (1 6 k 6 6),
where the values of the former and the latter are limited to
[23.0,32.0] and [0.0,100.0] respectively; the values of the veloc-
ity vector Vi corresponding to the former are limited to [�5,5]
and those corresponding to the latter are limited to [�50,50];
the value of the velocity threshold Vs corresponding to the for-
mer is set to 0.001 and that corresponding to the latter is set to
0.005, both c1 and c2 are set to 2, and x is set to 0.3. Let the
number of particles be 5. The randomized initial positions and
the initial velocities of all particles are listed in Tables 8 and
9, respectively.

In Table 8, each particle defines an independent group of six-
teen intervals which are u1 = [b0,b1),u2 = [b1,b2), . . . ,u9 = [b8,b9]
and v1 = [d0,d1),v2 = [d1,d2), . . . ,v7 = [d6,d7], respectively. For exam-
ple, the intervals of the initial position of particle 1 listed in Table 8
are then u1 = [23.0,24.0),u2 = [24.0,25.0), . . . ,u8 = [30.0,31.0),u9 =
[31.0, 32.0] and v1 = [0.0, 14.29), v2 = [14.29, 28.57), . . . ,v6 = 71.43,
85.71),m7 = [85.71,100.0], respectively.

For simplicity, assume that 9 intervals for the main-factor and 7
intervals for the second-factor created by particle 1 are identical to
the one used in the forecasting example mentioned in Section 2. So,
we follow the whole forecasting procedure described in Section 2
with respect to the corresponding steps in Algorithm 3, fuzzify
all historical data listed in Table 3, construct all two-factor sec-
ond-order fuzzy relationship groups listed in Table 4, get an inde-
pendent group of the trained two-factor second-order fuzzy
forecast rules listed in Table 5, and an individual group of the fore-
casted results listed in Tables 6 and 7, respectively. And the AFER
value for particle 1 in Table 8 is calculated in Eq. (10) based on
Eq. (8) as follows,
Table 15
A comparison of the average forecasting error rate of the proposed method with those of the existing methods in September 1996 in the training phase.

1st-order 2nd-order 3rd-order 4th-order 5th-order 6th-order 7th-order 8th-order

The proposed method
Average 0.56% 0.55% 0.57% 0.54% 0.51% 0.52% 0.53% 0.45%
Minimum 0.54% 0.54% 0.56% 0.54% 0.50% 0.51% 0.52% 0.41%
Standard deviation 0.02% 0.00% 0.00% 0.00% 0.01% 0.01% 0.01% 0.02%

Lee et al.’s method (Lee et al., 2008)
Annealing constant 1st-order 2nd-order 3rd-order 4th-order 5th-order 6th-order 7th-order 8th-order
a = 0.25 0.69% 0.58% 0.59% 0.57% 0.56% 0.57% 0.58% 0.47%
a = 0.5 0.66% 0.62% 0.59% 0.59% 0.56% 0.54% 0.56% 0.53%
a = 0.9 0.62% 0.59% 0.61% 0.57% 0.54% 0.59% 0.57% 0.50%

Lee et al.’s method (Lee et al., 2007)
Window basis 1st-order 2nd-order 3rd-order 4th-order 5th-order 6th-order 7th-order 8th-order

1.28% 0.91% 0.86% 1.03% 0.87% 0.97% 0.84% 0.82%

Chen et al.’s method (Chen & Hwang, 2000)
Window basis w = 2 w = 3 w = 4 w = 5 w = 6 w = 7 w = 8

3.29% 3.10% 3.19% 3.22% 3.39% 3.38% 3.29%



Table 17
A comparison of the mean square error of the proposed method with that of Lee et al.’s method for the training phase.

1st-order 2nd-order 3rd-order 4th-order 5th-order 6th-order 7th-order 8th-order

The proposed method
Average 875.84 177.43 167.91 126.97 116.97 118.96 100.15 108.87
Minimum 530.80 153.48 140.97 112.41 105.40 114.81 92.17 94.54
Standard deviation 215.19 22.00 12.80 15.42 8.54 2.15 6.62 10.43

Lee et al.’s method (Lee et al., 2008)
Annealing constant 1st-order 2nd-order 3rd-order 4th-order 5th-order 6th-order 7th-order 8th-order
a = 0.25 849.03 192.57 282.71 202.87 226.67 309.18 316.40 151.34
a = 0.5 1205.32 213.47 280.82 206.48 217.84 176.51 244.51 148.63
a = 0.9 799.19 193.88 208.79 142.26 143.31 147.14 105.02 124.45

Lee et al.’s method (Lee et al., 2007)
Window basis 1st-order 2nd-order 3rd-order 4th-order 5th-order 6th-order 7th-order 8th-order

1779.30 667.57 543.74 530.63 722.09 305.75 249.61 251.65
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AFER ¼
Pn

i¼1
jforecasted value of day i�actual value of day ij

actual value of day i

n
� 100%

¼
P31

i¼3
jforecasted value of day i�actual value of day ij

actual value of day i

29
� 100%

¼
j28:5—28:9j

28:9 þ j29:5—29:3j
29:3 þ j28:5—28:8j

28:8 þ � � � þ j26:5—26:0j
26:0 þ j27:5—27:7j

27:7

29
� 100%

¼ 1:06%;

ð10Þ
where n denotes the number of the forecasted data (i.e. 29), and
3 6 i 6 31 (i.e. from August-3-1996 to August-31-1996).

After all particles have got their own AFER values, every particle
updates its own personal best position so far according to the AFER
value. Note that the initial personal best positions are set as the ini-
tial positions of all particles. The personal best positions of all par-
ticles so far are listed in Table 8. In Table 8, since the AFTER value of
b1 ¼ 0:3� ð�1:67Þ þ 2� rand1ðÞ � ð24:00� 24:00Þ þ 2� rand2ðÞ � ð23:89� 24:00Þ ¼ �0:53;

b2 ¼ 0:3� ð3:81Þ þ 2� rand1ðÞ � ð25:00� 25:00Þ þ 2� rand2ðÞ � ð24:65� 25:00Þ ¼ 1:07;

b3 ¼ 0:3� ð�0:20Þ þ 2� rand1ðÞ � ð26:00� 26:00Þ þ 2� rand2ðÞ � ð25:91� 26:00Þ ¼ �0:08;

b4 ¼ 0:3� ð0:61Þ þ 2� rand1ðÞ � ð27:00� 27:00Þ þ 2� rand2ðÞ � ð26:88� 27:00Þ ¼ 0:16;

b5 ¼ 0:3� ð1:16Þ þ 2� rand1ðÞ � ð28:00� 28:00Þ þ 2� rand2ðÞ � ð28:44� 28:00Þ ¼ 0:44;

b6 ¼ 0:3� ð1:62Þ þ 2� rand1ðÞ � ð29:00� 29:00Þ þ 2� rand2ðÞ � ð29:19� 29:00Þ ¼ 0:53;

b7 ¼ 0:3� ð1:17Þ þ 2� rand1ðÞ � ð30:00� 30:00Þ þ 2� rand2ðÞ � ð30:02� 30:00Þ ¼ 0:35;

b8 ¼ 0:3� ð1:85Þ þ 2� rand1ðÞ � ð31:00� 31:00Þ þ 2� rand2ðÞ � ð30:93� 31:00Þ ¼ 0:54;

d1 ¼ 0:3� ð1:02Þ þ 2� rand1ðÞ � ð14:29� 14:29Þ þ 2� rand2ðÞ � ð14:11� 14:29Þ ¼ 0:27;

d2 ¼ 0:3� ð21:40Þ þ 2� rand1ðÞ � ð28:57� 28:57Þ þ 2� rand2ðÞ � ð30:55� 28:57Þ ¼ 6:84;

d3 ¼ 0:3� ð1:52Þ þ 2� rand1ðÞ � ð42:86� 42:86Þ þ 2� rand2ðÞ � ð43:16� 42:86Þ ¼ 0:52;

d4 ¼ 0:3� ð10:59Þ þ 2� rand1ðÞ � ð57:14� 57:14Þ þ 2� rand2ðÞ � ð62:78� 57:14Þ ¼ 4:36;

d5 ¼ 0:3� ð46:67Þ þ 2� rand1ðÞ � ð71:43� 71:43Þ þ 2� rand2ðÞ � ð70:25� 71:43Þ ¼ 13:75;

d6 ¼ 0:3� ð32:21Þ þ 2� rand1ðÞ � ð85:71� 85:71Þ þ 2� rand2ðÞ � ð88:55� 85:71Þ ¼ 10:26:

ð11Þ
particle 3 is the least among all five particles so far, the global best
position (i.e. PGbest in Eq. (5)) is then set to particle 3. Then the
MTPSO algorithm moves all particles to the second positions
according to Eqs. (5)–(7).
The velocity of particle 1 is calculated in Eq. (11) based on Eq.
(5). In Eq. (11) the elements will be restricted by Eq. (7) (i.e. veloc-
ity vector Vi that bj 2 Vi (1 6 j 6 8) is limited to [�5,5] and dk 2 Vi

(1 6 k 6 6) is limited to [�50, 50]). In other words, the velocity vec-
tor is = {�0.53, 1.07, �0.08, 0.16, 0.44, 0.53, 0.35, 0.54, 0.27, 6.84,
0.52, 4.36, 13.75, 10.26}. Then the position vector of particle
1 = {23.47, 26.07, 25.92, 27.16, 28.44, 29.53, 30.35, 31.54, 14.56,
35.41, 43.38, 61.50, 85.18, 95.97} based on Eq. (6). Last, restrict
the main-factor (i.e. YA(t)) and the second-factor (i.e. YB(t)) in the
lower bound and upper bound of the universe of discourse within
particle 1, respectively, and intervals of corresponding new posi-
tion vector of the main-factor and the second-factor within particle
ineed to be sorted to ensure that each interval bj (1 � j � 8) and dk

(1 � k � 6) arrange in an ascending order, respectively. By this pro-
cedure, we can get the other particles’ position and velocity. Now
the MTPSO model moves all particles to the second positions
according to Eqs. (5)–(7). The second positions and the correspond-
ing new AFER values of all particles are listed in Table 10, and the
second velocities of all particles are listed in Table 11.
By comparing the AFER values listed in Table 8 with those listed
in Table 10, it is obvious that particle 1 reaches a better position
than its own personal best position so far. Also the new global best



Table 18
A comparison of the mean square error of the proposed method with those of other existing methods in the training phase.

Date Actual
TAIFEX
index

Chen’s method
Chen (1996)

Huarng’s method
(Two-variable
heuristic)Huarng
(2001a)

Huarng’s method
(Three-variable
heuristic) Huarng
(2001b)

Lee et al.’s
method
Lee et al. (2006)

Lee et al.’s method
Lee et al. (2007)

Lee et al.’s method
Lee et al. (2008)

The proposed
method (Seventh-
order; MTPSO)

8/3/1998 7552
8/4/1998 7560 7450 7450 7450
8/5/1998 7487 7450 7450 7450
8/6/1998 7462 7500 7450 7500 7450
8/7/1998 7515 7500 7500 7500 7550
8/10/1998 7365 7450 7450 7450 7350
8/11/1998 7360 7300 7350 7300 7350
8/12/1998 7330 7300 7300 7300 7350 7348 7329 7325.28
8/13/1998 7291 7300 7350 7300 7250 7301.5 7289.5 7287.48
8/14/1998 7320 7183.33 7100 7188.33 7350 7311.5 7329 7325.28
8/15/1998 7300 7300 7350 7300 7350 7301.5 7289.5 7287.48
8/17/1998 7219 7300 7300 7300 7250 7226.5 7215 7221.26
8/18/1998 7220 7183.33 7100 7100 7250 7226.5 7215 7221.26
8/19/1998 7285 7183.33 7300 7300 7250 7301.5 7289.5 7287.48
8/20/1998 7274 7183.33 7100 7188.33 7250 7256.5 7289.5 7287.48
8/21/1998 7225 7183.33 7100 7100 7250 7226.5 7215 7221.26
8/24/1998 6955 7183.33 7100 7100 6950 6952 6949.5 6952.02
8/25/1998 6949 6850 6850 6850 6950 6952 6949.5 6952.02
8/26/1998 6790 6850 6850 6850 6750 6783.5 6796 6781.01
8/27/1998 6835 6775 6650 6775 6850 6852 6848 6842.05
8/28/1998 6695 6850 6750 6750 6650 6713 6698.5 6696.17
8/29/1998 6728 6750 6750 6750 6750 6713 6726 6726.50
8/31/1998 6566 6775 6650 6650 6550 6561 6569.5 6580.45
9/1/1998 6409 6450 6450 6450 6450 6406 6417 6409.24
9/2/1998 6430 6450 6550 6550 6450 6406 6417 6409.24
9/3/1998 6200 6450 6350 6350 6250 6198.5 6205 6213.94
9/4/1998 6403.2 6450 6450 6450 6450 6406 6417 6409.24
9/5/1998 6697.5 6450 6550 6550 6650 6703 6698.5 6696.17
9/7/1998 6722.3 6750 6750 6750 6750 6713 6726 6726.50
9/8/1998 6859.4 6775 6850 6850 6850 6852 6848 6864.96
9/9/1998 6769.6 6850 6750 6750 6750 6783.5 6763 6781.01
9/10/1998 6709.75 6775 6650 6650 6750 6713 6726 6696.17
9/11/1998 6726.5 6775 6850 6775 6750 6713 6726 6726.50
9/14/1998 6774.55 6775 6850 6775 6817 6783.5 6763 6781.01
9/15/1998 6762 6775 6650 6775 6817 6783.5 6763 6781.01
9/16/1998 6952.75 6775 6850 6850 6817 6953 6949.5 6952.02
9/17/1998 6906 6850 6950 6850 6950 6952 6904.5 6906.70
9/18/1998 6842 6850 6850 6850 6850 6852 6848 6842.05
9/19/1998 7039 6850 6950 6850 7050 7089 7064 7039.20
9/21/1998 6861 6850 6850 6850 6850 6852 6848 6864.96
9/22/1998 6926 6850 6950 6850 6950 6952 6904.5 6906.70
9/23/1998 6852 6850 6850 6850 6850 6852 6848 6842.05
9/24/1998 6890 6850 6950 6850 6850 6893 6904.5 6906.70
9/25/1998 6871 6850 6850 6850 6850 6852 6848 6864.96
9/28/1998 6840 6850 6750 6750 6850 6852 6848 6842.05
9/29/1998 6806 6850 6750 6850 6850 6792.5 6796 6781.01
9/30/1998 6787 6850 6750 6750 6750 6783.5 6796 6781.01
MSE 9668.94 7856.5 5437.58 1364.56 249.61 105.02 92.17
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Table 19
A comparison of the mean square errors of the proposed method under two-factor seventh-order fuzzy relationships forecasting model to those of Lee et al.’s methods in the testing phase.a

Actual TAIFEX index Lee et al.’s method Lee et al. (2007) Lee et al.’s method Lee et al. (2008) The proposed method

R1 R2 R3 R4 R5 R1 R2 R3 R4 R5 R1 R2 R3 R4 R5

9/10/1998 6709.75 6618.01 6611.68 6615.48 6614.86 6621.43 6928.23 6898.27 6918.74 6917.40 6940.32 6738.53 6726.08 6734.51 6733.95 6745.45
9/11/1998 6726.5 6683.42 6678.66 6677.80 6678.52 6677.48 6843.59 6847.00 6833.64 6852.23 6844.41 6764.25 6759.73 6756.24 6760.57 6757.89
9/14/1998 6774.55 6711.88 6714.55 6714.02 6696.02 6709.63 6799.85 6794.92 6810.33 6805.71 6801.85 6734.07 6736.45 6739.72 6718.22 6731.76
9/15/1998 6762 6735.55 6725.65 6732.89 6734.10 6732.02 6763.78 6770.44 6760.34 6762.37 6757.97 6726.55 6722.37 6723.91 6725.12 6722.54
9/16/1998 6952.75 6751.10 6751.99 6754.04 6753.79 6753.38 6791.52 6786.10 6789.71 6793.06 6787.25 6752.84 6752.16 6754.75 6755.38 6753.72
9/17/1998 6906 6759.98 6756.68 6757.13 6758.73 6756.02 6788.16 6786.01 6785.15 6784.40 6782.97 6765.37 6762.75 6762.95 6763.46 6761.54
9/18/1998 6842 6813.32 6802.42 6805.79 6805.88 6804.26 6964.29 6958.33 6958.09 6970.74 6970.06 6864.83 6853.45 6855.95 6859.65 6857.27
9/19/1998 7039 6836.26 6835.09 6838.97 6842.18 6842.04 6962.23 6928.86 6964.39 6977.22 6968.04 6890.64 6882.64 6893.47 6900.53 6898.97
9/21/1998 6861 6845.38 6850.54 6848.56 6853.19 6839.01 6867.86 6860.38 6871.17 6874.46 6854.84 6862.36 6868.10 6868.70 6873.82 6853.07
9/22/1998 6926 6904.72 6907.21 6910.99 6905.26 6897.33 7083.07 7107.55 7105.86 7126.05 7094.50 6951.21 6958.78 6961.68 6960.41 6951.95
9/23/1998 6852 6903.37 6908.97 6904.24 6907.43 6896.83 6857.20 6868.28 6862.71 6862.49 6858.96 6899.55 6909.34 6901.60 6906.14 6896.84
9/24/1998 6890 6918.69 6907.90 6915.33 6912.33 6919.27 6969.43 6932.60 6959.07 6944.36 6958.77 6921.17 6904.29 6916.62 6909.81 6919.94
9/25/1998 6871 6900.59 6898.23 6906.50 6905.18 6903.36 6832.85 6826.99 6833.52 6831.88 6832.86 6882.44 6878.28 6886.00 6885.13 6884.99
9/28/1998 6840 6908.27 6900.22 6903.14 6894.83 6895.95 6936.67 6900.98 6896.95 6843.24 6911.98 6910.55 6893.01 6892.40 6874.54 6894.10
9/29/1998 6806 6882.39 6883.24 6887.30 6881.62 6879.31 6855.42 6859.03 6863.76 6858.45 6860.31 6864.21 6866.85 6871.54 6865.87 6866.17
9/30/1998 6787 6868.88 6872.16 6868.67 6868.02 6878.34 6821.64 6826.67 6823.38 6825.64 6806.04 6858.44 6862.44 6859.12 6858.38 6865.06
MSE 8815.32 8815.32 9012.04 8813.86 8755.44 10519.78 10519.78 10216.53 10207.16 10601.61 6555.68 6555.68 6662.58 6385.86 6236.40
RMSEb 93.89 93.89 94.93 93.88 93.57 102.57 102.57 101.08 101.03 102.96 80.97 80.97 81.62 79.91 78.97
Average of RMSE 94.03 102.04 80.49
Minimum of RMSE 93.57 101.03 78.97
Standard deviation of RMSE 0.52 0.92 1.05

a All three methods use the same number of intervals.
b The function of root mean squared error (RMSE) is defined by: RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
forecasted value of dayi�actual value of dayið Þ2

n

r
.
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position for all particles is created by particle 1 as its AFER is the
least for all particles so far. The MTPSO model repeats the above
steps until the stop condition is satisfied.
5. Experimental results

5.1. Experimental results for the training phase

The essential parameters of MTPSO model for the temperature
prediction are set as follows. We simulated 10 runs in each order.
Let the number of iterations be 1000, the number of particles be 30,
the value of inertial weight (i.e. x) be 0.3, the self confidence coef-
ficient (i.e. c1) and the social confidence coefficient (i.e. c2) both be
2, the velocity of the main-factor (i.e., the daily average tempera-
ture) be limited to [�5,5], the minimum velocity threshold of the
main-factor Vs1 be 0.001, the velocity of the second-factor (i.e.,
the daily cloud density) be limited to [�50,50], the minimum
velocity threshold of the second-factor Vs2 be 0.005, the universe
of discourse on YA of the main-factor on the fuzzy time series be
[23.0,32.0] and be cut into 9 intervals, and the universe of dis-
course on YB of the second-factor on the fuzzy time series be
[0.0,100.0] and be cut into 7 intervals, respectively.

A comparison of the forecasted accuracy (i.e. the AFER value)
between the proposed method, Lee et al. (2007, 2008) method
and Chen and Hwang (2000) method under different order fuzzy
relationships is listed in Tables 12–15. We can see that the pro-
posed method gets smaller forecasting error rate than the methods
presented in Chen and Hwang (2000) and Lee et al. (2007, 2008).
That is, the proposed method gets the higher forecasting accuracy
rate than the methods presented in Chen and Hwang (2000) and
Lee et al. (2007, 2008) for dealing with the temperature prediction
from June 1996 to September 1996 in Taipei, Taiwan.

The essential parameters of MTPSO model for forecasting TAI-
FEX are set as follows. We simulated 10 runs in each order. Let
the number of iterations be 1000, the number of particles be 30,
the value of inertial weight (i.e. x) be 0.3, the self confidence coef-
ficient (i.e. c1) and the social confidence coefficient (i.e. c2) both be
2, the velocity of the main-factor (i.e., the TAIFEX) be limited to
[�750, 750], the minimum velocity threshold of the main-factor
Vs1 be 0.1, the velocity of the second-factor (i.e., the TAIEX) be lim-
ited to [�750, 750], the minimum velocity threshold of the second-
factor Vs2 be 0.1, the universe of discourse on YA of the main-factor
on the fuzzy time series be [6100,7700] and be cut into 16 inter-
vals, and the universe of discourse on YB of the second-factor on
the fuzzy time series be [6100,7700] and be cut into 16 intervals,
respectively. Let YA(t) and YB(t) be two historical data of the TAIFEX
index and the TAIEX index on day t (8/3/19986 t 6 9/30/1998) is
listed in Table 16.

A comparison of the forecasted accuracy (i.e. the MSE value) be-
tween the proposed method and the existing methods under dif-
ferent order fuzzy relationships is listed in Table 17 (Lee et al.,
2007, 2008) and 18 (Chen, 1996; Huarng, 2001a, 2001b; Lee
et al., 2006, 2007, 2008). By Tables 17 and 18, the proposed method
also gets the smaller forecasting error rate than the methods pre-
sented in Chen (1996), Huarng (2001a, 2001b), and Lee et al.
(2006, 2007, 2008). In Table 17, we list the comparison to Lee et.
al.’s methods Lee et al. (2007, 2008) with different orders up to
8. In Table 18, we list the comparison to all existing methods each
with the best forecasting accuracy.
5.2. Experimental results for the testing phase

In this section, we used the result of training phase to forecast-
ing TAIFEX index. Based on the historical data for the past days, we
can forecast the new TAIFEX index for the next day only. For exam-
ple, the historical data of TAIFEX index and TAIFEX index under
days 8/3/1998–9/23/1998, are used to forecast the new TAIFEX in-
dex of day 9/24/1998 using MTPSO. And the historical data of TAI-
FEX index and TAIFEX index under days 8/3/1998–9/24/1998, are
used to forecast the new TAIFEX index of day 9/25/1998. In the
experiment, based on two-factor seventh-order fuzzy relationship,
we ran the MTPSO algorithm for five times (i.e. R1, R2, R3, R4, R5 in
Table 19) and forecasted the latest 16 (i.e. from 9/10/1998 to 9/30/
1998 in Table 19) of total 47 (i.e. from 8/3/1998 to 9/30/1998 in Ta-
ble 16). The results of ours are also compared to those of Lee et. al.’s
methods Lee et al. (2007, 2008). To forecast the untrained pattern,

the formula 1�mikþ2�miðk�1Þþ���þk�mi1

1þ2þ���þk is used in (Lee et al., 2007) and the

formula mik þ
ðmiðk�1Þ�mikÞþðmiðk�2Þ�miðk�1ÞÞþ���þðmi1�mi2Þ

k�1 is used in (Lee et al.,
2008), respectively.

Experimental results of forecasted accuracy (i.e. the MSE value)
in the testing phase are listed in Table 19. As shown in Table 19 for
forecasting TAIFEX index from 9/10/1998 to 9/30/1998, the pro-
posed method gets the smaller forecasting error rate than those
of the methods presented in Lee et al. (2007, 2008).
6. Conclusions

In this paper, we proposed a modified turbulent particle swarm
optimization (named MTPSO) forecast model based on two-factor
high-order fuzzy relationships and particle swarm optimization.
The proposed method uses the MTPSO technique to adjust the
length of each interval in the universe of discourse for the temper-
ature prediction and the TAIFEX forecasting to improve the fore-
casting accuracy rate. The experimental results for these two
problems show that the MTPSO model is more precise than any
existing methods that forecast data for both the training phase
and the testing phase.
References

Chen, S. M. (1996). Forecasting enrollments based on fuzzy time series. Fuzzy Sets
and Systems, 81, 311–319.

Cheng, C. H., Chen, T. L., Teoh, H. J., & Chiang, C. H. (2008). Fuzzy time-series based
on adaptive expectation model for TAIEX forecasting. Expert Systems with
Applications, 34, 1126–1132.

Chen, S. M., & Hwang, J. R. (2000). Temperature prediction using fuzzy time series.
IEEE Transactions on Systems, Man, and Cybernetics, Part B, 30, 263–275.

Chu, H. H., Chen, T. L., Cheng, C. H., & Huang, C. C. (2009). Fuzzy dual-factor time-
series for stock index forecasting. Expert Systems with Applications, 36, 165–171.

Eberhart, R. C., & Shi, Y. (1998). Comparison between Genetic Algorithms and Particle
Swarm Optimization (Vol. 1447). Berlin, Heidelberg: Springer.

Elbeltagi, E., Hegazy, T., & Grierson, D. (2005). Comparison among five evolutionary-
based optimization algorithms. Advanced Engineering Informatics, 19, 43–53.

Huarng, K. (2001a). Effective lengths of intervals to improve forecasting in fuzzy
time series. Fuzzy Sets and Systems, 123, 387–394.

Huarng, K. (2001b). Heuristic models of fuzzy time series for forecasting. Fuzzy Sets
and Systems, 123, 369–386.

Huarng, K., & Yu, H. K. (2005). A type 2 fuzzy time series model for stock index
forecasting. Physica A: Statistical Mechanics and its Applications, 353, 445–462.

Kennedy, J., Eberhart, R. C., & Shi, Y. (2001). The particle swarm. In Swarm
intelligence (pp. 287–325). San Francisco: Morgan Kaufmann.

Kuo, I. H., Horng, S. J., Kao, T. W., Lin, T. L., Lee, C. L., & Pan, Y. (2009). An improved
method for forecasting enrollments based on fuzzy time series and particle
swarm optimization. Expert Systems with Applications, 36, 6108–6117.

Lee, L. W., Wang, L. H., & Chen, S. M. (2007). Temperature prediction and TAIFEX
forecasting based on fuzzy logical relationships and genetic algorithms. Expert
Systems with Applications, 33, 539–550.

Lee, L. W., Wang, L. H., & Chen, S. M. (2008). Temperature prediction and TAIFEX
forecasting based on high-order fuzzy logical relationships and genetic
simulated annealing techniques. Expert Systems with Applications, 34, 328–336.

Lee, L. W., Wang, L. H., Chen, S. M., & Leu, Y. H. (2006). Handling forecasting
problems based on two-factors high-order fuzzy time series. IEEE Transactions
on Fuzzy Systems, 14, 468–477.

Li, Z., Chen, Z., & Li, J. (1988). A model of weather forecast by fuzzy grade statistics.
Fuzzy Sets and Systems, 26, 275–281.

Liu, H., & Abraham, A. (2005). Fuzzy adaptive turbulent particle swarm
optimization. In Hybrid intelligent systems, 2005. HIS ’05. Fifth international
conference on, 2005 (p. 6).



2770 L.-Y. Hsu et al. / Expert Systems with Applications 37 (2010) 2756–2770
Shi, Y., & Eberhart, R. C. (1998). A modified particle swarm optimizer. In Evolutionary
computation proceedings, 1998. IEEE world congress on computational intelligence,
IEEE international conference on, 1998 (pp. 69–73).

Shi, Y., & Eberhart, R. C. (2001). Fuzzy adaptive particle swarm optimization. In
Evolutionary computation, 2001. Proceedings of the 2001 Congress on, 2001 (Vol. 1,
pp. 101–106).

Singh, S. R. (2007a). A simple method of forecasting based on fuzzy time series.
Applied Mathematics and Computation, 186, 330–339.

Singh, S. R. (2007b). A robust method of forecasting based on fuzzy time series.
Applied Mathematics and Computation, 188, 472–484.

Singh, S. R. (2009). A computational method of forecasting based on fuzzy time
series. Mathematics and Computers in Simulation, 79, 539–554.

Song, Q., & Chissom, B. S. (1993a). Fuzzy time series and its models. Fuzzy Sets and
Systems, 54, 269–277.
Song, Q., & Chissom, B. S. (1993b). Forecasting enrollments with fuzzy time series –
Part I. Fuzzy Sets and Systems, 54, 1–9.

Song, Q., & Chissom, B. S. (1994). Forecasting enrollments with fuzzy time series –
Part II. Fuzzy Sets and Systems, 62, 1–8.

Tsai, C. C., & Wu, S. J. (2000). Forecasting enrolments with high-order fuzzy time
series. In Fuzzy Information Processing Society (NAFIPS), 19th international
conference of the North American (pp. 196–200).

Wang, N. Y., & Chen, S. M. (2009). Temperature prediction and TAIFEX forecasting
based on automatic clustering techniques and two-factors high-order fuzzy
time series. Expert Systems with Applications, 36, 2143–2154.

Yu, T. H. K., & Huarng, K. H. (2008). A bivariate fuzzy time series model to forecast
the TAIEX. Expert Systems with Applications, 34, 2945–2952.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.


	Temperature prediction and TAIFEX forecasting based on fuzzy relationships and MTPSO techniques
	Introduction
	The procedure of the temperature prediction using the fuzzy time series
	Step 1: Define two universes of discourse YA(t) and YB(t)
	Step 2: Partition the universes YA(t) and YB(t) into several intervals
	Step 3: Define fuzzy set linguistic terms
	Step 4: Fuzzify all historical data
	Step 5: Construct all two-factor λth-order fuzzy
	Step 6: Calculate the forecasting value and create all fuzzy forecast rules based on all fuzzy relationship groups
	Step 7: Forecast the training or the testing data based on the forecast rules

	Particle swarm optimization
	Standard particle swarm optimization
	Turbulent particle swarm optimization

	The new proposed forecast model
	Experimental results
	Experimental results for the training phase
	Experimental results for the testing phase

	Conclusions
	References


